Skip to main content
Accessibility|Contact|Privacy|Terms|Cookies

Smartphone App Detects Bipolar Disorder Mood Swings

  • Published: 2014-05-11 : Author: University of Michigan Health System : Contact: Kara Gavin - kegavin@umich.edu - Ph. 734-764-2220
  • Synopsis: Smartphone app monitors subtle voice qualities during phone conversations shows promise for detecting early signs of mood changes in people with bipolar disorder.

Quote: "The ability to predict mood changes with sufficient advance time to intervene would be an enormously valuable biomarker for bipolar disorder."

Main Document

Listening to bipolar disorder: Smartphone app detects mood swings via voice analysis - Subtle changes could act as early warning of need for care, U-M research suggests.

While the app still needs much testing before widespread use, early results from a small group of patients show its potential to monitor moods while protecting privacy.

The researchers hope the app will eventually give people with bipolar disorder and their health care teams an early warning of the changing moods that give the condition its name. The technology could also help people with other conditions.

More patients, all taking part in the study funded by the National Institute of Mental Health and facilitated by the Prechter Bipolar Research Fund at the U-M Depression Center, have already started to use the app on study-provided smartphones. As more patients volunteer, the team will continue to test and improve the technology.

The U-M team, led by computer scientists Zahi Karam, Ph.D. and Emily Mower Provost, Ph.D., and psychiatrist Melvin McInnis, M.D., presented its first findings today at the International Conference on Acoustics, Speech and Signal Processing in Italy, and published details simultaneously in the conference proceedings.

They call the project PRIORI, because they hope it will yield a biological marker to prioritize bipolar disorder care to those who need it most urgently to stabilize their moods - especially in regions of the world with scarce mental health services. Bipolar disorder affects tens of millions of people worldwide, and can have devastating effects including suicide.

But first, based on these encouraging findings, the technology and algorithms will be developed via research involving 60 American patients who receive treatment from U-M teams at the nation's first center devoted to depression and related disorders.

"These pilot study results give us preliminary proof of the concept that we can detect mood states in regular phone calls by analyzing broad features and properties of speech, without violating the privacy of those conversations," says Karam, a postdoctoral fellow and specialist in machine learning and speech analysis. "As we collect more data the model will become better, and our ultimate goal is to be able to anticipate swings, so that it may be possible to intervene early."

Adds McInnis, a bipolar specialist, "This is tremendously exciting not only as a technical achievement, but also as an illustration of what the marriage of mental health research, engineering and innovative research funding can make possible."

He adds, "The ability to predict mood changes with sufficient advance time to intervene would be an enormously valuable biomarker for bipolar disorder."

He notes that the initial seed funding for the voice technology research came from the Michigan Institute for Clinical and Health Research. The ready source of patient-volunteers came from a Prechter Fund-supported registry, and the new early results were made possible by NIMH funding.

The research team hails from the Department of Psychiatry at the U-M Medical School and the Division of Computer Science and Engineering in the Department of Electrical and Computer Engineering at the U-M College of Engineering. It includes Satinder Singh, Ph.D. an artificial intelligence and machine learning expert.

How it works

The app runs in the background on an ordinary smartphone, and automatically monitors the patients' voice patterns during any calls made as well as during weekly conversations with a member of the patient's care team. The computer program analyzes many characteristics of the sounds - and silences - of each conversation.

Only the patient's side of everyday phone calls is recorded - and the recordings themselves are encrypted and kept off-limits to the research team. They can see only the results of computer analysis of the recordings, which are stored in secure servers that comply with patient privacy laws.

Standardized weekly mood assessments with a trained clinician provide a benchmark for the patient's mood, and are used to correlate the acoustic features of speech with their mood state.

Because other mental health conditions also cause changes in a person's voice, the same technology framework developed for bipolar disorder could prove useful in everything from schizophrenia and post-traumatic stress disorder to Parkinson's disease, the researchers say.

Results so far

The first six patients all have a rapid-cycling form of Type 1 bipolar disorder and a history of being prone to frequent depressive and manic episodes. The researchers showed that their analysis of voice characteristics from everyday conversations could detect elevated and depressed moods.

The detection of mood states will improve over time as the software gets trained based on more conversations and data from more patients.

The researchers study patients as they experience all aspects of bipolar disorder mood changes, from mild depressions and hypomania (mild mania) to full-blown depressed and manic states. Over time, they hope to develop software that will learn to detect the changes that precede the transitions to each of these states. They also need to develop and explore strategies for notifying the app user and care providers about mood changes, so that appropriate intervention can take place.

The app currently runs on Android operating system phones, and complies with laws about recording conversations because only one side of the conversation actually gets recorded. The University of Michigan has applied for patent protection for the intellectual property involved.

Prechter project manager Gloria Harrington, MSW, social worked Jennifer Montgomery, MSW, and research technician Christopher Archer, B.S. also worked on the project.

To be eligible for the smartphone app study, patients must first enroll in the Prechter Fund-sponsored long-term study of bipolar disorder, which accepts adults with and without bipolar disorder. More information and contact information to sign up: umhealth.me/prechterbp (study number HUM00000606). For more about the Prechter Fund, visit prechterfund.org/

Funding: National Institute of Mental Health, MH100404


Have Your Say! - Add your comment or discuss this article on our FaceBook Page.


Interesting Similar Topics
1 : Screen Reader Plus Keyboard Helps Blind, Low-Vision Users Browse Modern Webpages : University of Washington.
2 : HopkinsPD Smartphone App Helps Doctors Track Severity of Parkinson's Disease Symptoms : Johns Hopkins University.
3 : Cleen App Aims to Improve UK Public Washroom Standards and Accessibility : Sarah Jenkin-Jones.
4 : Libby App Enables Free Ebooks and Audiobooks From the Library : Rakuten OverDrive.
5 : Mobile Phone App to Control Diabetes May be Possible Someday : Rutgers University.
From our Disability and Health Apps section - Full List (116 Items)


Submit disability news, coming events, as well as assistive technology product news and reviews.


Loan Information for low income singles, families, seniors and disabled. Includes home, vehicle and personal loans.


Famous People with Disabilities - Well known people with disabilities and conditions who contributed to society.


List of awareness ribbon colors and their meaning. Also see our calendar of awareness dates.


Blood Pressure Chart - What should your blood pressure be, and information on blood group types/compatibility.





1 : Eating at Night, Sleeping By Day Alters Key Blood Proteins
2 : Interior Car Temperature Can Become Life-threatening for Children in an Hour
3 : 20 New Episodes of Letters to Lynette with Dr. Lynette Louise to Air on The Autism Channel in 2018
4 : Turnstone Center Designated as Official Paralympic Training Site by US Olympic Committee
5 : Help Your Child in School by Adding Language to The Math
6 : 50% of Retirees Saw Little or No COLA Increase in Net 2018 Social Security Benefits
7 : Turnstone Endeavor Games Concludes with National Records Broken
8 : Spinning in Circles and Learning From Myself by Tsara Shelton


Disclaimer: This site does not employ and is not overseen by medical professionals. Content on Disabled World is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of a physician or other qualified health provider with any questions you may have regarding a medical condition. See our Terms of Service for more information.

Reporting Errors: Disabled World is an independent website, your assistance in reporting outdated or inaccurate information is appreciated. If you find an error please let us know.

© 2004 - 2018 Disabled World™