Skip to main content
Accessibility|Contact|Privacy|Terms|Cookies

Implantable Device to Reanimate Paralyzed Limbs

  • Published: 2015-12-29 : Author: University of Washington : Contact: uw.edu
  • Synopsis: UW center receives $16M to work on first closed-loop neural interface implantable device to reanimate paralyzed limbs.

Quote: "This funding renewal for CSNE will allow us to advance the frontiers in closed-loop neural interfaces..."

Main Document

In the next decade, people who have suffered a spinal cord injury or stroke could have their mobility improved or even restored through a radically new technology: implantable devices that can send signals between regions of the brain or nervous system that have been disconnected due to injury.

That's the mission driving the Center for Sensorimotor Neural Engineering, a University of Washington-led effort that includes researchers from the Massachusetts Institute of Technology, San Diego State University and other partners.

To support development of this much-needed technology, the National Science Foundation recently renewed the center's funding. It has awarded $16 million over the next four years to support research on implantable devices that promote brain plasticity and reanimate paralyzed limbs.

"There's a huge unmet need, especially with an aging population of baby boomers, for developing the next generation of medical devices for helping people with progressive or traumatic neurological conditions such as stroke and spinal cord injury," said CSNE director and UW professor of computer science and engineering Rajesh Rao.

Center for Sensorimotor Neural Engineering researchers examine flexible neural recording fibers that can be used in implantable devices for restoring motor function in stroke and spinal cord injury patients - Photo Credit: University of Washington
About This Image: Center for Sensorimotor Neural Engineering researchers examine flexible neural recording fibers that can be used in implantable devices for restoring motor function in stroke and spinal cord injury patients - Photo Credit: University of Washington
The goal is to achieve proof-of-concept demonstrations in humans within the next five years, Rao said. This will lay the groundwork for eventual clinical devices approved by the Food and Drug Administration, in collaboration with the center's industry partners.

CSNE was founded in 2011 with an $18.5 million NSF grant. Since then, its interdisciplinary team of neuroscientists, engineers, computer scientists, neurosurgeons, ethicists and industry partners has led the way in developing 'bi-directional' implantable devices that can both pick up brain signals and send information to other parts of the nervous system.

The devices record and decode electrical signals generated by the brain when a person forms an intention, for example, to move a hand to pick up a cup. The devices are also able to wirelessly transmit that information, essentially creating a new artificial pathway around damaged areas of the brain or nervous system.

"When Christopher Reeve sustained a spinal cord injury due to a fall from his horse, his brain circuits were still intact and able to form the intention to move, but unfortunately the injury prevented that intention from being conveyed to the spinal cord," Rao said.

"Our implantable devices aim to bridge such lost connections by decoding brain signals and stimulating the appropriate part of the spinal cord to enable the person to move again," he said.

The same technology could also be used to promote plasticity for targeted rehabilitation in stroke and spinal cord injury patients - essentially reconnecting brain or spinal regions and helping the nervous system repair and rewire itself.

CSNE is also working on improving today's implantable technologies, such as deep brain stimulators used to treat Parkinson's disease and tremors. These typically deliver electric pulses to the brain at an appropriate frequency that's adjusted by a physician to achieve the desired effect.

But this means that the brain is constantly bombarded by electrical pulses even when a person is resting and the pulses aren't needed. This can lead to unwanted side effects and drain the implantable device's battery, leading to more frequent replacement surgeries.

By contrast, CSNE researchers and industry partners are working on a next generation of 'closed loop' implantable devices that monitor the brain and deliver targeted electrical stimulation only when it's needed.

"This funding renewal for CSNE will allow us to advance the frontiers in closed-loop neural interfaces," said CSNE deputy director Chet Moritz, a UW associate professor of rehabilitation medicine and of physiology & biophysics. "We have a fantastic team of engineers and neuroscientists working closely together, and continued NSF support is critical to achieving these ambitious goals."

The NSF funding will also enable the center to expand its already popular outreach and education programs for K-12 students, school teachers, undergraduates and veterans to other partner institutions. The UW is additionally launching an undergraduate minor and graduate certificate program in neural engineering next year.

Other CSNE collaborators include Spelman College, Morehouse College, Southwestern College, the University of British Columbia, the University of Freiburg and the Indian Institute of Science in Bangalore.


Have Your Say! - Add your comment or discuss this article on our FaceBook Page.


Interesting Similar Topics
1 : Robotic Device Improves Balance and Gait in Parkinson's Disease Patients : Columbia University School of Engineering and Applied Science.
2 : Disabled Americans in Big Cities Find Many Mobility Challenges : 1800Wheelchair.com.
3 : WHILL WeDrive - Free Online Community for Mobility Device Users : WHILL.
4 : Man with Quadriplegia Uses Brain Interface Technology to Move Again : Case Western Reserve University.
5 : New Affordable Wheelchair Tennis Chair : Tennis Foundation.
From our Mobility Aids and Devices section - Full List (32 Items)


Submit disability news, coming events, as well as assistive technology product news and reviews.


Loan Information for low income singles, families, seniors and disabled. Includes home, vehicle and personal loans.


Famous People with Disabilities - Well known people with disabilities and conditions who contributed to society.


List of awareness ribbon colors and their meaning. Also see our calendar of awareness dates.


Blood Pressure Chart - What should your blood pressure be, and information on blood group types/compatibility.





1 : Eating at Night, Sleeping By Day Alters Key Blood Proteins
2 : Interior Car Temperature Can Become Life-threatening for Children in an Hour
3 : 20 New Episodes of Letters to Lynette with Dr. Lynette Louise to Air on The Autism Channel in 2018
4 : Turnstone Center Designated as Official Paralympic Training Site by US Olympic Committee
5 : Help Your Child in School by Adding Language to The Math
6 : 50% of Retirees Saw Little or No COLA Increase in Net 2018 Social Security Benefits
7 : Turnstone Endeavor Games Concludes with National Records Broken
8 : Spinning in Circles and Learning From Myself by Tsara Shelton


Disclaimer: This site does not employ and is not overseen by medical professionals. Content on Disabled World is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of a physician or other qualified health provider with any questions you may have regarding a medical condition. See our Terms of Service for more information.

Reporting Errors: Disabled World is an independent website, your assistance in reporting outdated or inaccurate information is appreciated. If you find an error please let us know.

© 2004 - 2018 Disabled World™