Skip to main content
Accessibility  |  About  |  Contact  |  Privacy  |  Terms

Improving Cochlear Implants with Computer Models of Neuronal Sound Processing

  • Published: 2013-12-03 (Revised/Updated 2014-02-09) : Technische Universitaet Muenchen (Dr. Andreas Battenberg - battenberg@zv.tum.de - 49-892-891-0510).
  • Synopsis: Investigating implementation of signals in the auditory nerve and subsequent neuronal processing in the brain using computer models developed at TUM manufacturers of cochlear implants.

Main Document

Quote: "Getting implants to operate more precisely will require strategies that are better geared to the information processing of the neuronal circuits in the brain..."

Computer models of neuronal sound processing in the brain lead to cochlear implant improvements.

Intact hearing is a prerequisite for learning to speak. This is why children who are born deaf are fitted with so-called cochlear implants as early as possible. Cochlear implants consist of a speech processor and a transmitter coil worn behind the ear, together with the actual implant, an encapsulated microprocessor placed under the skin to directly stimulate the auditory nerve via an electrode with up to 22 contacts.

Adults who have lost their hearing can also benefit from cochlear implants. The devices have advanced to the most successful neuroprostheses. They allow patients to understand the spoken word quite well again. But the limits of the technology are reached when listening to music, for example, or when many people speak at once. Initial improvements are realized by using cochlear implants in both ears.

A further major development leap would ensue if spatial hearing could be restored. Since our ears are located a few centimeters apart, sound waves form a given source generally reach one ear before the other. The difference is only a few millionths of a second, but that is enough for the brain to localize the sound source. Modern microprocessors can react sufficiently fast, but a nerve impulse takes around one hundred times longer. To achieve a perfect interplay, new strategies need to be developed.

Researchers at the Technische Universitaet Muenchen (TUM) have developed computer models of the neuronal information processing in the brain stem. This model will allow further development of coding strategies to improve future cochlear implants. Photo: Astrid Eckert
About This Image: Researchers at the Technische Universitaet Muenchen (TUM) have developed computer models of the neuronal information processing in the brain stem. This model will allow further development of coding strategies to improve future cochlear implants. Photo: Astrid Eckert
Modeling the auditory system

The perception of sound information begins in the inner ear. There, hair cells translate the mechanical vibrations into so-called action potentials, the language of nerve cells. Neural circuitry in the brain stem, mesencephalon and diencephalon transmits the signals to the auditory cortex, where around 100 million nerve cells are responsible for creating our perception of sound. Unfortunately, this "coding" is still poorly understood by science.

"Getting implants to operate more precisely will require strategies that are better geared to the information processing of the neuronal circuits in the brain. The prerequisite for this is a better understanding of the auditory system," explains Professor Werner Hemmert, director of the Department for Bio-Inspired Information Processing, at the TUM Institute of Medical Engineering (IMETUM).

Based on physiological measurements of neurons, his working group successfully built a computer model of acoustic coding in the inner ear and the neuronal information processing by the brain stem. This model will allow the researchers to further develop coding strategies and test them in experiments on people with normal hearing, as well as people carrying implants.

The fast track to better hearing aids

For manufacturers of cochlear implants collaborating with the TUM researchers, these models are very beneficial evaluation tools. Preliminary testing at the computer translates into enormous time and cost savings. "Many ideas can now be tested significantly faster. Then only the most promising processes need to be evaluated in cumbersome patient trials," says Werner Hemmert. The new models thus have the potential to significantly reduce development cycles. "In this way, patients will benefit from better devices sooner."

Similar Topics

1 : Hearing Charities of America's Hearing Aid Project Changing Lives with Donor's Help : Hearing Charities of America.
2 : Brain Imaging Predicts Language Learning in Deaf Children : Ann & Robert H. Lurie Children's Hospital of Chicago.
3 : Sign Language Comparative List of Astronomical Words : International Astronomical Union.
4 : Sign Language May Offer Answer to Meaning of Music : New York University.
5 : Human Brain Tunes Into Visual Rhythms In Sign Language : University of Chicago.
From our Deaf Communication section - Full List (63 Items)

Submit disability news, coming events, as well as assistive technology product news and reviews.


Loan Information for low income singles, families, seniors and disabled. Includes home, vehicle and personal loans.


Famous People with Disabilities - Well known people with disabilities and conditions who contributed to society.


List of awareness ribbon colors and their meaning. Also see our calendar of awareness dates.


Blood Pressure Chart - What should your blood pressure be, and information on blood group types/compatibility.





1 : Newborns Who Experience Stroke Regain Language Function in Opposite Side of Brain
2 : Cognition and Emotion Play a Role in Predicting Quality of Children's Friendships
3 : Metabolomics - Promising Tool for Advancing in Treatment Personalization of Oncological Patients
4 : Climbing Stairs Lowers Blood Pressure and Strengthens Leg Muscles

Citation


Disclaimer: This site does not employ and is not overseen by medical professionals. Content on Disabled World is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of a physician or other qualified health provider with any questions you may have regarding a medical condition. See our Terms of Service for more information.

Reporting Errors: Disabled World is an independent website, your assistance in reporting outdated or inaccurate information is appreciated. If you find an error please let us know.