🏡 HomeMenuNewsA - Z

Restoring Paretic Hand Function via Artificial Neural Connection

  • Date : 2013-04-11
  • National Institute for Physiological Sciences
  • Synopsis : Study demonstrates artificial neural connections can compensate for interrupted descending pathways and promote volitional control of upper limb movement after damage of neural pathways by SCI or stroke.

Main Document

Restoring paretic hand function via an artificial neural connection bridging spinal cord injury.

Paretic: Paretic - Pertaining to or affected with paresis, a condition typified by a weakness of voluntary movement, or partial loss of voluntary movement or by impaired movement. When used without qualifiers, it usually refers to the limbs, but it also can be used to describe the muscles of the eyes (ophthalmoparesis), the stomach (gastroparesis), and also the vocal cords (Vocal cord paresis). Neurologists use the term paresis to describe weakness, and plegia to describe paralysis in which all voluntary movement is lost.

Functional loss of limb control in individuals with spinal cord injury or stroke can be caused by interruption of the neural pathways between brain and spinal cord, although the neural circuits located above and below the lesion remain functional.

An artificial neural connection that bridges the lost pathway and connects brain to spinal circuits has potential to ameliorate the functional loss.

Yukio Nishimura, Associate Professor of the National Institute for Physiological Sciences, Japan, and Eberhard Fetz, Professor and Steve Perlmuter, Research Associate Professor at the University of Washington, United States investigated the effects of introducing a novel artificial neural connection which bridged a spinal cord lesion in a paretic monkey. This allowed the monkey to electrically stimulate the spinal cord through volitionally controlled brain activity and thereby to restore volitional control of the paretic hand.

This study demonstrates that artificial neural connections can compensate for interrupted descending pathways and promote volitional control of upper limb movement after damage of neural pathways such as spinal cord injury or stroke.

The study will be published online in Frontiers in Neural Circuits on April 11.

"The important point is that individuals who are paralyzed want to be able to move their own bodies by their own will. This study was different from what other research groups have done up to now; we didn't use any prosthetic limbs like robotic arms to replace the original arm. What's new is that we have been able to use this artificial neuronal connection bypassing the lesion site to restore volitional control of the subject's own paretic arm. I think that for lesions of the corticospinal pathway this might even have a better chance of becoming a real prosthetic treatment rather than the sort of robotic devices that have been developed recently", Associate professor Nishimura said.



• Important Disclaimer: Information provided on Disabled World is for general informational and educational purposes only, it is not offered as and does not constitute medical advice. In no way are any of the materials presented meant to be a substitute for professional medical care or attention by a qualified practitioner, nor should they be construed as such. Any third party offering or advertising on this website does not constitute an endorsement by Disabled World. Please report outdated or inaccurate information.
© 2004 - 2018 Disabled World™