Skip to main content

Multiple Sclerosis: New MS Drug Target Discovered

  • Synopsis: Published: 2015-02-18 - New research could lead to the development of new types of drugs to treat Multiple Sclerosis (MS). For further information pertaining to this article contact: Center for Addiction and Mental Health at www.camh.net.
Multiple Sclerosis

A disease in which your immune system attacks the protective sheath (myelin) that covers your nerves. Myelin damage disrupts communication between your brain and the rest of your body. Ultimately, the nerves themselves may deteriorate, a process that's currently irreversible. People with multiple sclerosis (MS) tend to have their first symptoms between the ages of 20 and 40. Usually the symptoms get better, but then come back. Some may come and go, while others linger.

Main Document

Quote: "Multiple sclerosis (MS) is a progressive, often disabling neurological disease, which is most often diagnosed among young adults between the ages of 15 and 40."

Scientists at the Center for Addiction and Mental Health (CAMH) have discovered a promising new approach to treat multiple sclerosis (MS). In a new study, they've identified a previously unknown change in the spinal cord related to MS, and a way to alter this change to reduce the nerve cell damage and alleviate motor problems that occur with the disease.

This research, which could lead to the development of new types of drugs to treat MS, was led by Dr. Fang Liu, Senior Scientist in CAMH's Campbell Family Mental Health Research Institute and Professor in the Department of Psychiatry, University of Toronto.

The study appears in the Annals of Clinical and Translational Neurology.

Multiple sclerosis (MS) is a progressive, often disabling neurological disease, which is most often diagnosed among young adults between the ages of 15 and 40. Canada has one of the highest rates of MS in the world, affecting up to 290 per 100,000 people, according to the Atlas of MS. While the exact cause of MS is unknown, the body's immune response is involved, and is the target of all current medications used in treatment. These medications do not cure the illness, but they do help alleviate symptoms and slow the progression of the disease.

"We've identified a new biological target for MS therapy," says Dr. Liu. This approach aims to stop the nerve damage related to an important brain transmitter called glutamate. As a molecular neuroscientist, Dr. Liu and her lab focus on the development of new types of targeted treatments in the brain and spinal cord related to various brain-related conditions.

The focus of her team's investigation into MS was a spinal cord change that involved a protein, which attaches to a specific cell receptor for the glutamate neurotransmitter. This linked receptor-protein complex was present at higher levels in spinal cord tissues of deceased MS patients and in animal models for MS.

The potential for a new MS treatment is based on what Dr. Liu's team was able to show after this discovery. Using techniques developed in her lab, the researchers created a new peptide -a tiny piece of protein - to try and disrupt this change in animal models of MS.

"We found that our peptide disrupted this linkage, and led to major improvements in neurological functioning," says Dr. Liu. Specifically, motor function was significantly better compared to a comparison group. The peptide also had a positive impact on the nerve damage associated with MS - it reduced neuron death, and rescued the protective coating of neurons called myelin, which is characteristic of MS. It also increased the survival of the cells that produce myelin.

In MS, inflammation damages myelin in the central nervous system (CNS), which can harm the underlying nerves and interrupt the transmission of nerve impulses. MS is associated with a wide variety of symptoms, based on where the damage occurs in the CNS.

Importantly, the new peptide didn't appear to suppress the body's immune response system directly, and did not impair physiologically essential neuron transmission in the brain - a common side effect for drugs targeting the glutamate system, notes Dr. Liu. "Our priority now would be to extend this research and determine how this discovery can be translated into treatment for patients."

This study was funded by the Multiple Sclerosis Society of Canada and National Multiple Sclerosis Society (USA).

The Center for Addiction and Mental Health (CAMH) is Canada's largest mental health and addiction teaching hospital, and one of the world's leading research centers in its field. CAMH combines clinical care, research, education, policy development and health promotion to help transform the lives of people affected by mental health and addiction issues. CAMH is fully affiliated with the University of Toronto, and is a Pan American Health Organization/World Health Organization Collaborating Center. For more information, please visit www.camh.ca



Related Information:

  1. Multiple Sclerosis - HPV Vaccination No Increased Risk - The JAMA Network Journals - (2015-01-11)
    https://www.disabled-world.com/health/autoimmunediseases/ms/qhpv.php
  2. Dental Mercury Fillings and Multiple Sclerosis Link Examined - International Academy of Oral Medicine and Toxicology - (2013-01-03)
    https://www.disabled-world.com/health/autoimmunediseases/ms/examined.php
  3. A Step Closer to Cell Therapy for MS Patients - New York Stem Cell Foundation - (2014-07-24)
    https://www.disabled-world.com/news/research/stemcells/cell-therapy.php


Information from our Multiple Sclerosis: Subtypes, Symptoms, Diagnosis and Treatment section - (Full List).


     What will I receive?

Loan Information for low income singles, families, seniors and disabled. Includes home, vehicle and personal loans.


Famous People with Disabilities - Well known people with disabilities and conditions who contributed to society.


List of awareness ribbon colors and their meaning. Also see our calendar of awareness dates.


Blood Pressure Chart - What should your blood pressure be. Also see information on blood group types and compatibility.


  1. New Approach to Studying Chromosomes' Centers May Reveal Link to Down Syndrome and More
  2. Social Mobile Gaming Boosts Rehabilitation for Patients with Physical Disabilities
  3. Rebuilding Spinal Cords with Energetic Polymer Scaffold
  4. Nonprofit Disability Solutions Connects Jobseekers with Top Companies




Citation