Gene Therapy for Patients with Severe Hemophilia B
Topic: Health and Disability
Author: St. Jude Children's Research Hospital
Published: 2014/11/20 - Updated: 2020/11/22
Contents: Summary - Introduction - Main Item - Related Topics
Synopsis: Gene therapy transforms life for men with severe form of hemophilia B by providing safe, reliable source of blood clotting protein Factor IX allowing some to adopt more active lifestyles. Hemophilia B is caused by a mutation in the Factor IX gene that can result in dangerously low levels of the essential clotting protein. Factor IX levels rose in all 10 men with severe hemophilia B following gene therapy and have remained stable for more than four years.
Introduction
Gene therapy developed at St. Jude Children's Research Hospital, University College London (UCL) and the Royal Free Hospital has transformed life for men with a severe form of hemophilia B by providing a safe, reliable source of the blood clotting protein Factor IX that has allowed some to adopt a more active lifestyle, researchers reported.
Main Item
These results appear in the November 20 edition of The New England Journal of Medicine.
In this study, participants received one of three doses of gene therapy that used a modified adeno-associated virus (AAV) 8 as the vector to deliver the genetic material for making Factor IX. The vector was administered as a single infusion into a peripheral vein in the arm of each participant.
Factor IX levels rose in all 10 men with severe hemophilia B following gene therapy and have remained stable for more than four years.
Overall, episodes of spontaneous bleeding declined 90 percent. Use of Factor IX replacement therapy dropped about 92 percent in the first 12 months after the treatment with the investigational therapy.
In the six participants who received the highest gene therapy dose, levels of the blood-clotting protein increased from less than 1 percent of normal levels to 5 percent or more. The increase transformed their disease from severe to mild and enabled participation in sports such as soccer without the need for Factor IX replacement therapy or an increase in the risk of bleeding. Episodes of spontaneous bleeding and use of Factor IX replacement therapy declined for these patients more than 94 percent in the next 12 months.
Liver enzymes rose in four of the six patients who received the highest dose, possibly due to an immune response against the vector. The men had no symptoms and remained otherwise healthy. Their liver enzymes returned to the normal range following brief treatment with steroids.
Hemophilia B is caused by a mutation in the Factor IX gene that can result in dangerously low levels of the essential clotting protein.
The disorder affects about 1 in 30,000 individuals, mostly men. For those with severe disease marked by Factor IX levels less than 1 percent of normal, scrapes and bumps are medical emergencies. Painful episodes of spontaneous bleeding can result in crippling joint damage early in life and an increased risk of potentially fatal bleeding within the brain.
"This study provides the first clear demonstration of the long-term safety and efficacy of gene therapy," said senior author Andrew Davidoff, M.D., chair of the St. Jude Department of Surgery. "The results so far have made a profound difference in the lives of study participants by dramatically reducing their risk of bleeding."
The paper's first and corresponding author, Amit Nathwani, M.D., Ph.D., added:
"The data we are reporting mark a paradigm shift in treatment of hemophilia B and lay the groundwork for curing this major bleeding disorder." Nathwani is a faculty member at the UCL Cancer Institute, Royal Free Hospital and NHS Blood and Transplant. "The results also provide a solid platform for developing this gene transfer approach for treatment of other disorders ranging from other congenital clotting deficiencies like hemophilia A to inborn errors of metabolism such as phenylketonuria."
Prior to receiving gene therapy, seven of the 10 men received Factor IX replacement therapy at least once a week in order to prevent bleeding episodes. Others used replacement therapy as needed to halt bleeding or prior to surgeries.
Since joining the trial, four of the seven men ended the routine Factor IX injections.
None have suffered spontaneous bleeding despite increased physical activity. "Some patients have not required clotting factor injections for more four years, which has been life changing," Nathwani said. Researchers estimated that overall spending on Factor IX replacement therapy for study participants is down more than $2.5 million.
Factor IX is normally produced by liver cells. AAV8 was selected for the vector because the virus infects liver cells but does not cause disease in humans or integrate into human DNA. This study was restricted to patients not previously infected with AAV8 to eliminate the need for immune-suppressing drugs to protect the vector from possible immune system attack.
The vector was developed by the St. Jude-UCL collaboration and produced at the Children's Good Manufacturing Practices (GMP), LLC, on the St. Jude campus. The Children's GMP operates under U.S. government-approved manufacturing guidelines and is also complaint with European Union manufacturing requirements. It produces highly specialized medicines, vaccines and other products that are in the early stages of development.
Twelve men have now joined the on-going Phase I/II safety and efficacy trial.
Half were treated at UCL and half at St. Jude. Discussions are underway about expanding the trial to include younger patients with hemophilia B. Meanwhile work continues to improve and expand use of the vector for treatment of hemophilia A, another more common bleeding disorder.
Other authors are Ulrike Reiss, Catherine Y.C. Ng, Junfang Zhou, Maria Cancio, Christopher Morton, Deokumar Srivastava and Arthur Nienhuis, all of St. Jude; John Gray and James Allay, both formerly of St. Jude; Edward G.D. Tuddenham, Pratima Chowdary, Jenny McIntosh, Anne Riddell and Jun Pie, all of Royal Free NHS Trust; Cecilia Rosales, Marco Della Peruta, Elsa Lheriteau, Nishal Patel and Deepak Raj, all of UCL Cancer Institute; Savita Rangarajan and David Bevan, both of St. Thomas Hospital, London; Michael Recht, Oregon Health & Science University, Portland, Ore.; Yu-Min Shen, University of Texas Southwestern Medical Center, Dallas; Kathleen Halka, Temple Clinic, Temple, Texas; Etiena Basner-Tschakarjan, Federico Mingozzi and Katherine High, all of Children's Hospital of Philadelphia; and Mark Kay, Stanford University, Palo Alto, Calif.
In the U.S., the research was funded by a grant (HL094396) from the National Heart, Lung, and Blood Institute at the National Institutes of Health; the Assisi Foundation of Memphis; Howard Hughes Medical Institute and ALSAC. In the U.K., the research was founded in part by the Medical Research Council, The Katharine Dormandy Trust; NHS Blood and Transplant; UCLH/UCL NIHR Biomedical Research Center; The Royal Free Hospital Charity and a NIHR Program Grant.
Attribution/Source(s):
This quality-reviewed publication was selected for publishing by the editors of Disabled World due to its significant relevance to the disability community. Originally authored by St. Jude Children's Research Hospital, and published on 2014/11/20 (Edit Update: 2020/11/22), the content may have been edited for style, clarity, or brevity. For further details or clarifications, St. Jude Children's Research Hospital can be contacted at stjude.org. NOTE: Disabled World does not provide any warranties or endorsements related to this article.
Explore Related Topics
1 - New Evidence from Huanan Market Strengthens COVID-19's Animal Origin Theory - New sample analysis provides additional evidence that wildlife sold illegally at a Chinese market were ground zero for the COVID pandemic.
2 - Plumbing Seals and Gaskets Can Leak Additives Into Drinking Water - In this pilot study, researchers collected tap water from buildings and detected polymer additives at parts per trillion levels in every sample.
3 - Alarming Antibiotic Resistance Levels Found in Ukrainian Wounded - Researchers assisting microbiologists in Ukraine investigate bacterial resistance among wounded treated in hospitals reveal many patients exhibited extremely high level of antibiotic resistance.
4 - Waist-to-height Ratio Better Indicator Than BMI of Patients with Heart Failure Outcome - Research shows there is an obesity paradox whereby patients with heart failure who are overweight or obese are thought to be less likely to be hospitalized or die than people of average weight.
5 - Hand Sanitizer vs. Soap: Which is Best for Effective Hand Washing? - Explains the difference between alcohol based hand sanitizer and plain hand soap. Information includes when and how to use each one to wash your hands properly.
Page Information, Citing and Disclaimer
Disabled World is a comprehensive online resource that provides information and news related to disabilities, assistive technologies, and accessibility issues. Founded in 2004 our website covers a wide range of topics, including disability rights, healthcare, education, employment, and independent living, with the goal of supporting the disability community and their families.
Cite This Page (APA): St. Jude Children's Research Hospital. (2014, November 20 - Last revised: 2020, November 22). Gene Therapy for Patients with Severe Hemophilia B. Disabled World. Retrieved October 11, 2024 from www.disabled-world.com/health/factor-ix.php
Permalink: <a href="https://www.disabled-world.com/health/factor-ix.php">Gene Therapy for Patients with Severe Hemophilia B</a>: Gene therapy transforms life for men with severe form of hemophilia B by providing safe, reliable source of blood clotting protein Factor IX allowing some to adopt more active lifestyles.
Disabled World provides general information only. Materials presented are never meant to substitute for qualified medical care. Any 3rd party offering or advertising does not constitute an endorsement.