Possible Major Advance for Neurological Diseases Following New discovery
Topic: Neurological Disorders
Author: University of Bristol - Contact: bristol.ac.uk
Published: 2017/02/15
Contents: Summary - Introduction - Main Item - Related Topics
Synopsis: Discovery of new mechanism that controls the way nerve cells in the brain communicate with each other to regulate our learning and long-term memory.
Introduction
The discovery of a new mechanism that controls the way nerve cells in the brain communicate with each other to regulate our learning and long-term memory could have major benefits to understanding how the brain works and what goes wrong in neurodegenerative disorders such as epilepsy and dementia. The breakthrough, published in Nature Neuroscience, was made by scientists at the University of Bristol and the University of Central Lancashire. The findings will have far-reaching implications in many aspects of neuroscience.
Main Item
The human brain contains around 100-billion nerve cells, each of which makes about 10,000 connections to other cells, called synapses. Synapses are constantly transmitting information to, and receiving information from other nerve cells. A process, called long-term potentiation (LTP), increases the strength of information flow across synapses. Lots of synapses communicating between different nerve cells form networks and LTP intensifies the connectivity of the cells in the network to make information transfer more efficient. This LTP mechanism is how the brain operates at the cellular level to allow us to learn and remember. However, when these processes go wrong they can lead to neurological and neurodegenerative disorders.
Precisely how LTP is initiated is a major question in neuroscience.
Traditional LTP is regulated by the activation of special proteins at synapses called NMDA receptors. This study, by Professor Jeremy Henley and co-workers reports a new type of LTP that is controlled by kainate receptors.
This is an important advance as it highlights the flexibility in the way synapses are controlled and nerve cells communicate. This, in turn, raises the possibility of targeting this new pathway to develop therapeutic strategies for diseases like dementia, in which there is too little synaptic transmission and LTP, and epilepsy where there is too much inappropriate synaptic transmission and LTP.
Jeremy Henley, Professor of Molecular Neuroscience in the University's School of Biochemistry in the Faculty of Medical and Veterinary Sciences, said:
"These discoveries represent a significant advance and will have far-reaching implications for the understanding of memory, cognition, developmental plasticity and neuronal network formation and stabilisation. In summary, we believe that this is a groundbreaking study that opens new lines of inquiry which will increase understanding of the molecular details of synaptic function in health and disease."
Dr Milos Petrovic, co-author of the study and Reader in Neuroscience at the University of Central Lancashire added:
"Untangling the interactions between the signal receptors in the brain not only tells us more about the inner workings of a healthy brain, but also provides a practical insight into what happens when we form new memories. If we can preserve these signals it may help protect against brain diseases."
"This is certainly an extremely exciting discovery and something that could potentially impact the global population. We have discovered potential new drug targets that could help to cure the devastating consequences of dementias, such as Alzheimer's disease. Collaborating with researchers across the world in order to identify new ways to fight disease like this is what world-class scientific research is all about, and we look forward to continuing our work in this area."
The study was conducted by researchers at the University of Bristol and the University of Central Lancashire (UCLan), with support from academics from India, France and the Czech Republic. The study was funded by the European Research Council, the Medical Research Council [MRC], the British Heart Foundation and the Biotechnology and Biological Sciences Research Council [BBSRC].
Paper: 'Metabotropic action of postsynaptic kainate receptors triggers hippocampal LTP' by Milos M. Petrovic, Silvia Viana da Silva, James P. Clement, Ladislav Vyklicky, Christophe Mulle, Inmaculada M González-González, and Jeremy M. Henley is published in Nature Neuroscience.
Explore Related Topics
1 - The Pain of Thinking: How Mental Effort Leads to Unpleasant Feelings - Mental exertion appears to be associated with unpleasant feelings in many situations, according to research published by the American Psychological Association.
2 - Genetic Links Between Autism and Schizophrenia - Discovery of a genetic mutation and new synaptic adhesion signaling mechanism that causes intellectual disabilities.
3 - High Functioning Autism and Asperger's Syndrome Indications - Michelle Fattig writes on understanding and acknowledging autism, ASD, high functioning autism and Asperger's Syndrome.
4 - People Who Hear Voices Can Detect Hidden Speech in Unusual Sounds - Research reveals people who hear voices may also use unusual skills when their brains process new sounds.
5 - Religion - It's ALL in Your Head! Religious Experiences and Epilepsy - Research supports the notion that the human propensity for religious or spiritual experiences may be neurologically based.
Page Information, Citing and Disclaimer
Disabled World is a comprehensive online resource that provides information and news related to disabilities, assistive technologies, and accessibility issues. Founded in 2004 our website covers a wide range of topics, including disability rights, healthcare, education, employment, and independent living, with the goal of supporting the disability community and their families.
Cite This Page (APA): University of Bristol. (2017, February 15). Possible Major Advance for Neurological Diseases Following New discovery. Disabled World. Retrieved October 16, 2024 from www.disabled-world.com/health/neurology/ltp.php
Permalink: <a href="https://www.disabled-world.com/health/neurology/ltp.php">Possible Major Advance for Neurological Diseases Following New discovery</a>: Discovery of new mechanism that controls the way nerve cells in the brain communicate with each other to regulate our learning and long-term memory.
Disabled World provides general information only. Materials presented are never meant to substitute for qualified medical care. Any 3rd party offering or advertising does not constitute an endorsement.