Screen Readers Skip to Content

Cutting and Healing Time for Dental Implants

Published : 2011-06-14 - Updated : 2019-04-01
Author : University of Gothenburg

Synopsis: Technology used to replace lost teeth with titanium dental implants could shorten the healing time for patients.

Main Digest

The technology used to replace lost teeth with titanium dental implants could be improved. By studying the surface structure of dental implants not only at micro level but also at nano level, researchers at the University of Gothenburg; Sweden, have come up with a method that could shorten the healing time for patients.

"Increasing the active surface at nano level and changing the conductivity of the implant allows us to affect the body's own biomechanics and speed up the healing of the implant," says Johanna Loberg at the University of Gothenburg's Department of Chemistry.

"This would reduce the discomfort for patients and makes for a better quality of life during the healing process."

Dental implants have been used to replace lost teeth for more than 40 years now.

Per-Ingvar Branemark, who was recently awarded the prestigious European Inventor Award, was the first person to realize that titanium was very body-friendly and could be implanted into bone without being rejected.

Titanium is covered with a thin layer of naturally formed oxide and it is this oxide's properties that determine how well an implant fuses with the bone.

It became clear at an early point that a rough surface was better than a smooth one, and the surface of today's implants is often characterized by different levels of roughness, from the thread to the superimposed nano-structures.

Anchoring the implant in the bone exerts a mechanical influence on the bone tissue known as bio-mechanical stimulation, and this facilitates the formation of new bone.

As the topography (roughness) of the surface is important for the formation of new bone, it is essential to be able to measure and describe the surface appearance in detail. But roughness is not the only property that affects healing.

Johanna Loberg has come up with a method that describes the implant's topography from micrometer to nanometer scale and allows theoretical estimations of anchoring in the bone by different surface topographies.

The method can be used in the development of new dental implants to optimize the properties for increased bone formation and healing.

She has also studied the oxide's conductivity, and the results show that a slightly higher conductivity results in a better cell response and earlier deposition of minerals that are important for bone formation.

The results are inline with animal studies and clinical trials of the commercial implant OsseoSpeed (Astra Tech AB), which show a slightly higher conductivity for the oxide and also an exchange between hydroxide and fluoride on the surface of the oxide. Surfaces with a well-defined nano-structure have a larger active area and respond quickly to the deposition of bone-forming minerals.

The project is a collaboration between the University of Gothenburg and Astra Tech AB in Malndal, and will be further evaluated in follow-up studies.


Cutting and Healing Time for Dental Implants | University of Gothenburg. Disabled World makes no warranties or representations in connection therewith. Content may have been edited for style, clarity or length.

You're reading Disabled World. See our homepage for informative disability news, reviews, sports, stories and how-tos. You can also connect with us on social media such as Twitter and Facebook or learn more about Disabled World on our about us page.

Disclaimer: Disabled World provides general information only. Materials presented are in no way meant to be a substitute for professional medical care by a qualified practitioner, nor should they be construed as such. Any 3rd party offering or advertising on does not constitute endorsement by Disabled World. View our Advertising Policy for further information. Please report outdated or inaccurate information to us.

Cite Page: Journal: Disabled World. Language: English (U.S.). Author: University of Gothenburg. Electronic Publication Date: 2011-06-14 - Revised: 2019-04-01. Title: Cutting and Healing Time for Dental Implants, Source: <a href=>Cutting and Healing Time for Dental Implants</a>. Retrieved 2021-06-20, from - Reference: DW#283-7958.