Print Page

Pneumococcal Vaccine Approach Successful in Tests

Published: 2011-02-16 - Updated: 2022-06-01
Author: Children's Hospital Boston - Contact: childrenshospital.org
Peer-Reviewed: N/A
Related Papers: Latest Items - Full List

On This Page: Summary - Main Article - About/Author

Synopsis: New vaccine candidate that is potentially cheaper and able to protect against any pneumococcal strain. The current study, led by Malley and Kristin Moffit, MD of Children's and Todd Gierahn, Ph.D., and Jessica Flechtner, Ph.D., of Genocea Biosciences, began by evaluating a comprehensive library of S. pneumoniae proteins, seeking those that stimulated TH17 cells in mice. They identified specific pneumococcal proteins that activated TH17 cells and used them to make a new vaccine formulation. In further collaboration with PATH, the researchers will refine and test the most promising formulation in preclinical studies. If the vaccine proves to be effective and safe, the group will prepare an Investigational New Drug (IND) application to the FDA to begin clinical trials.

Main Digest

Pneumococcus (Streptococcus pneumoniae) accounts for as much as 11 percent of mortality in young children worldwide. While successful vaccines like Prevnar® exist, they are expensive and only work against specific pneumococcal strains, with the risk of becoming less effective as new strains emerge. Through a novel discovery approach, researchers at Children's Hospital Boston and Genocea Biosciences, Inc., in collaboration with the international nonprofit organization PATH, developed a new vaccine candidate that is potentially cheaper and able to protect against any pneumococcal strain.

advertisement

Tested in mice, the protein-based vaccine successfully inhibited S. pneumoniae from establishing a foothold in the body, the researchers report in the February 17 issue of Cell Host & Microbe.

The current multivalent conjugate pneumococcal vaccines work by inducing people to make antibodies against the sugars on the bacterium's outer capsule. The antibodies then help fight off the development of disease after the bacteria have colonized the body. But these vaccines are complex to manufacture, requiring separate individual components for sugars produced by multiple pneumococcal strains. Since pneumococci can make more than 90 different types of sugars, the vaccines may become less effective over time.

The new protein-based vaccine takes a different approach. Based on close to a decade of research at Children's Hospital Boston and utilizing Genocea's novel vaccine discovery technology developed at Harvard Medical School, it stimulates a group of cells in the body known as TH17 cells. These cells provide natural immunity to pneumococcal infection by clearing the bacteria from the surfaces of the upper respiratory tract where the infection starts.

Six years ago, Richard Malley, MD, and colleagues showed in mice that while antibodies against surface proteins can protect against pneumococcal disease, there is another mechanism of protection that doesn't require antibodies: the body has natural defenses that act as security guards, preventing the bacteria from becoming squatters in the upper respiratory tract. More recently, they showed that this protection is centered in TH17 cells and the production of the chemical messenger IL-17A.

The current study, led by Malley and Kristin Moffit, MD of Children's and Todd Gierahn, Ph.D., and Jessica Flechtner, Ph.D., of Genocea Biosciences, began by evaluating a comprehensive library of S. pneumoniae proteins, seeking those that stimulated TH17 cells in mice. They identified specific pneumococcal proteins that activated TH17 cells and used them to make a new vaccine formulation.

When live mice were immunized with these antigens, they showed near-complete protection from S. pneumoniae upper respiratory tract colonization. These same antigenic proteins also potently stimulated human TH17 cells from healthy adult volunteers, causing them to secrete IL-17A.

"The next steps, already in motion, are to optimize the formulation of this vaccine, confirm its efficacy and safety in animals, and then proceed to human trials," says Malley.

In further collaboration with PATH, the researchers will refine and test the most promising formulation in preclinical studies. If the vaccine proves to be effective and safe, the group will prepare an Investigational New Drug (IND) application to the FDA to begin clinical trials.

Unlike existing conjugate vaccine components, the new pneumococcal protein-based vaccine antigens are common to all strains of S. pneumoniae. The researchers hope that a combination of 3 to 5 antigens will protect against pneumococcal colonization and disease from all strains, thereby providing comprehensive immunity with a universal vaccine that would be significantly less complex and expensive to manufacture.

Malley believes that an approach focusing on stimulating TH17 cells or IL-17A secretion may also be effective in providing protection against other pathogens such as Staphylococcus aureus, Mycobacterium tuberculosis, or Listeria monocytogenes.

"By combining advances in molecular biology, immunology, and bioinformatics, the strategy we use at Genocea allows comprehensive, rapid, and unbiased screens of every protein produced by an infectious agent to identify the most effective T cell-stimulating antigens," says Flechtner. "We look forward to our continued collaboration and the development of an improved pneumococcal vaccine."

Attribution/Source(s):

This quality-reviewed article relating to our Immunization and Vaccines section was selected for publishing by the editors of Disabled World due to its likely interest to our disability community readers. Though the content may have been edited for style, clarity, or length, the article "Pneumococcal Vaccine Approach Successful in Tests" was originally written by Children's Hospital Boston, and published by Disabled-World.com on 2011-02-16 (Updated: 2022-06-01). Should you require further information or clarification, Children's Hospital Boston can be contacted at childrenshospital.org. Disabled World makes no warranties or representations in connection therewith.

Share This Information To:
𝕏.com Facebook Reddit

Discover Related Topics:

advertisement


Disabled World is an independent disability community founded in 2004 to provide disability news and information to people with disabilities, seniors, their family and/or carers. See our homepage for informative reviews, exclusive stories and how-tos. You can connect with us on social media such as X.com and our Facebook page.

Permalink: <a href="https://www.disabled-world.com/medical/immunization/pneumococcal.php">Pneumococcal Vaccine Approach Successful in Tests</a>

Cite This Page (APA): Children's Hospital Boston. (2011, February 16). Pneumococcal Vaccine Approach Successful in Tests. Disabled World. Retrieved September 21, 2023 from www.disabled-world.com/medical/immunization/pneumococcal.php

Disabled World provides general information only. The materials presented are never meant to substitute for qualified professional medical care, nor should they be construed as such. Funding is derived from advertisements or referral programs. Any 3rd party offering or advertising does not constitute an endorsement.