Screen Readers Skip to Content
Tweet Facebook Buffer

Personalized Treatment for Intellectual Disabilities

Author: Scripps Research Institute : Contact: Eric Sauter - esauter@scripps.edu

Published: 2015-01-22

Synopsis and Key Points:

Protecting against a type of genetic disruption that causes intellectual disability, including memory impairments and altered anxiety levels.

Main Digest

Scientists from the Florida campus of The Scripps Research Institute (TSRI) have produced an approach that protects animal models against a type of genetic disruption that causes intellectual disability, including serious memory impairments and altered anxiety levels.

The findings, which focus on treating the effects of mutations to a gene known as Syngap1, have been published online ahead of print by the journal Biological Psychiatry.

"Our hope is that these studies will eventually lead to a therapy specifically designed for patients with psychiatric disorders caused by damaging Syngap1 mutations," said Gavin Rumbaugh, a TSRI associate professor who led the study. "Our model shows that the early developmental period is the critical time to treat this type of genetic disorder."

Damaging mutations in Syngap1 that reduce the number of functional proteins are one of the most common causes of sporadic intellectual disability and are associated with schizophrenia and autism spectrum disorder. Early estimates suggest that these non-inherited genetic mutations account for two to eight percent of these intellectual disability cases. Sporadic intellectual disability affects approximately one percent of the worldwide population, suggesting that tens of thousands of individuals with intellectual disability may carry damaging Syngap1 mutations without knowing it.

In the new study, the researchers examined the effect of damaging Syngap1 mutations during development and found that the mutations disrupt a critical period of neuronal growth - a period between the first and third postnatal weeks in mouse models. "We found that a certain type of cortical neuron grows too quickly in early development, which then leads to the premature formation of certain types of neural circuits," said Research Associate Massimilano Aceti, first author of the study.

Gavin Rumbaugh, Ph.D., is an associate professor at Scripps Florida. Photo courtesy of The Scripps Research Institute
Gavin Rumbaugh, Ph.D., is an associate professor at Scripps Florida. Photo courtesy of The Scripps Research Institute

The researchers reasoned that this process might cause permanent errors in brain connectivity and that they might be able to head off these effects by enhancing the Syngap1protein in the newborn mutant mice.

Indeed, they found that a subset of neurons were mis-connected in the adult mutant mice, suggesting that early growth of neurons can lead to life-long neural circuit connectivity problems.

Then, using advanced genetic techniques to raise Syngap1 protein levels in newborn mutant mice, the researchers found this strategy completely protected the mice only when the approach was started before this critical developmental window opened.

As a result of these studies, Rumbaugh and his colleagues are now developing a drug-screening program to look for drug-like compounds that could restore levels of Syngap1 protein in defective neurons.

They hope that, as personalized medicine advances, such a therapy could ultimately be tailored to patients based on their genotype.

In addition to Rumbaugh and Aceti, other authors of the study, "Syngap1 Haplo-insufficiency Damages a Postnatal Critical Period of Pyramidal Cell Structural Maturation Linked to Cortical Circuit Assembly," include Thomas K. Creson, Thomas Vaissiere, Camilo Rojas, Wen-Chin Huang, Ya-Xian Wang, Ronald S. Petralia, Damon T. Page and Courtney A. Miller of TSRI. For more information, see www.biologicalpsychiatryjournal.com/article/S0006-3223%2814%2900593-9/abstract

This work was supported by the National Institutes of Health's National Institute for Neurological Disorders and Stroke (R01NS064079), National Institute for Mental Health (R01MH096847), National Institute for Drug Abuse (R01 DA034116; R03 DA033499) and National Institute on Deafness and Other Communication Disorders/National Institutes of Health Intramural Research Program; Mrs. Nancy Lurie; and the State of Florida.

Related Documents


Important:

Disabled World uses cookies to help provide and enhance our services to you and tailor some content and advertising. By continuing you agree to the Disabled World Cookie Policy, Privacy Policy and Terms of Service.

Disabled World is strictly a news and information website provided for general informational purpose only and does not constitute medical advice. Materials presented are in no way meant to be a substitute for professional medical care by a qualified practitioner, nor should they be construed as such. Any 3rd party offering or advertising on disabled-world.com does not constitute endorsement by Disabled World.

Please report outdated or inaccurate information to us.