Personalized Treatment for Intellectual Disabilities
Topic: Personalized Medicine
Author: Scripps Research Institute
Published: 2015/01/22 - Updated: 2021/09/15
Contents: Summary - Introduction - Main - Related
Synopsis: Protecting against a type of genetic disruption that causes intellectual disability, including memory impairments and altered anxiety levels. Researchers examined the effect of damaging Syngap1 mutations during development and found that the mutations disrupt a critical period of neuronal growth - a period between the first and third postnatal weeks As a result of these studies, Rumbaugh and his colleagues are now developing a drug-screening program to look for drug-like compounds that could restore levels of Syngap1 protein in defective neurons.
Introduction
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have produced an approach that protects animal models against a type of genetic disruption that causes intellectual disability, including serious memory impairments and altered anxiety levels.
Main Digest
The findings, which focus on treating the effects of mutations to a gene known as Syngap1, have been published online ahead of print by the journal Biological Psychiatry.
"Our hope is that these studies will eventually lead to a therapy specifically designed for patients with psychiatric disorders caused by damaging Syngap1 mutations," said Gavin Rumbaugh, a TSRI associate professor who led the study. "Our model shows that the early developmental period is the critical time to treat this type of genetic disorder."
Damaging mutations in Syngap1 that reduce the number of functional proteins are one of the most common causes of sporadic intellectual disability and are associated with schizophrenia and autism spectrum disorder. Early estimates suggest that these non-inherited genetic mutations account for two to eight percent of these intellectual disability cases. Sporadic intellectual disability affects approximately one percent of the worldwide population, suggesting that tens of thousands of individuals with intellectual disability may carry damaging Syngap1 mutations without knowing it.
In the new study, the researchers examined the effect of damaging Syngap1 mutations during development and found that the mutations disrupt a critical period of neuronal growth - a period between the first and third postnatal weeks in mouse models.
"We found that a certain type of cortical neuron grows too quickly in early development, which then leads to the premature formation of certain types of neural circuits," said Research Associate Massimilano Aceti, first author of the study.
The researchers reasoned that this process might cause permanent errors in brain connectivity and that they might be able to head off these effects by enhancing the Syngap1protein in the newborn mutant mice.
Indeed, they found that a subset of neurons were mis-connected in the adult mutant mice, suggesting that early growth of neurons can lead to life-long neural circuit connectivity problems.
Then, using advanced genetic techniques to raise Syngap1 protein levels in newborn mutant mice, the researchers found this strategy completely protected the mice only when the approach was started before this critical developmental window opened.
As a result of these studies, Rumbaugh and his colleagues are now developing a drug-screening program to look for drug-like compounds that could restore levels of Syngap1 protein in defective neurons.
They hope that, as personalized medicine advances, such a therapy could ultimately be tailored to patients based on their genotype.
References:
In addition to Rumbaugh and Aceti, other authors of the study, "Syngap1 Haplo-insufficiency Damages a Postnatal Critical Period of Pyramidal Cell Structural Maturation Linked to Cortical Circuit Assembly," include Thomas K. Creson, Thomas Vaissiere, Camilo Rojas, Wen-Chin Huang, Ya-Xian Wang, Ronald S. Petralia, Damon T. Page and Courtney A. Miller of TSRI. For more information, see www.biologicalpsychiatryjournal.com/article/S0006-3223%2814%2900593-9/abstract
This work was supported by the National Institutes of Health's National Institute for Neurological Disorders and Stroke (R01NS064079), National Institute for Mental Health (R01MH096847), National Institute for Drug Abuse (R01 DA034116; R03 DA033499) and National Institute on Deafness and Other Communication Disorders/National Institutes of Health Intramural Research Program; Mrs. Nancy Lurie; and the State of Florida.
Attribution/Source(s):
This quality-reviewed publication was selected for publishing by the editors of Disabled World due to its significant relevance to the disability community. Originally authored by Scripps Research Institute, and published on 2015/01/22 (Edit Update: 2021/09/15), the content may have been edited for style, clarity, or brevity. For further details or clarifications, Scripps Research Institute can be contacted at scripps.edu. NOTE: Disabled World does not provide any warranties or endorsements related to this article.
Page Information, Citing and Disclaimer
Disabled World is a comprehensive online resource that provides information and news related to disabilities, assistive technologies, and accessibility issues. Founded in 2004 our website covers a wide range of topics, including disability rights, healthcare, education, employment, and independent living, with the goal of supporting the disability community and their families.
Cite This Page (APA): Scripps Research Institute. (2015, January 22 - Last revised: 2021, September 15). Personalized Treatment for Intellectual Disabilities. Disabled World. Retrieved September 10, 2024 from www.disabled-world.com/medical/pm/syngap1.php
Permalink: <a href="https://www.disabled-world.com/medical/pm/syngap1.php">Personalized Treatment for Intellectual Disabilities</a>: Protecting against a type of genetic disruption that causes intellectual disability, including memory impairments and altered anxiety levels.
Disabled World provides general information only. Materials presented are never meant to substitute for qualified medical care. Any 3rd party offering or advertising does not constitute an endorsement.