Over 400 Genes Linked to Height Determination
Topic: Medical Research News
Author: Boston Children's Hospital
Published: 2014/10/11 - Updated: 2020/12/11
Contents: Summary - Introduction - Main - Related
Synopsis: Largest genome-wide association study to date roughly doubles the number of known gene regions influencing human height to more than 400. Height is almost completely determined by genetics, but our earlier studies were only able to explain about 10 percent of this genetic influence... Height is a model trait for understanding how human genetics works - especially for traits produced by not one gene, but many.
Introduction
The study, from the international Genetic Investigation of Anthropometric Traits (GIANT) Consortium, provides a better glimpse at the biology of height and offers a model for investigating traits and diseases caused by many common gene changes acting together. Findings were published online October 5 by Nature Genetics.
Main Digest
"Height is almost completely determined by genetics, but our earlier studies were only able to explain about 10 percent of this genetic influence," says Joel Hirschhorn, MD, PhD, of Boston Children's Hospital and the Broad Institute of MIT and Harvard, leader of the GIANT Consortium and co-senior investigator on the study. "Now, by doubling the number of people in our study, we have a much more complete picture of how common genetic variants affect height - how many of them there are and how much they contribute."
The GIANT investigators, numbering in the hundreds, shared and analyzed data from the genomes of 253,288 people. They checked about two million common genetic variants (those that showed up in at least 5 percent of their subjects). From this pool, they pinned down 697 (in 424 gene regions) as being related to height, the largest number to date associated with any trait or disease.
"We can now explain about 20 percent of the heritability of height, up from about 12 percent where we were before," says co-first author Tonu Esko, PhD, of Boston Children's Hospital, the Broad Institute and the University of Tartu (Estonia).
"The study also narrows down the genomic regions that contain a substantial proportion of remaining variation - to be discovered with even larger sample sizes," adds co-senior investigator Peter Visscher, PhD, of the University of Queensland, Australia.
Greater Size, Greater Power
Height is a model trait for understanding how human genetics works - especially for traits produced by not one gene, but many. Height is easy to measure, and an estimated 80 percent of variation in height is genetic.
Previous large-scale genome-wide association studies (GWAS) have indicated that a large number of genes influence height, and suggested that the majority of heritability comes from common genetic variants, not rare ones. Because sample sizes have not been large enough to draw definitive conclusions, the GIANT team built the largest sample to date.
"When you double the sample size and increase your statistical power, you can make new discoveries," says Hirschhorn. "Our results prioritize many genes and pathways as important in skeletal growth during childhood. Without a highly collaborative model, there's no way we could get this work done."
The researchers believe their results answer critics of population-scale GWAS, who have argued that increasing the sample size yields diminishing returns or results that become meaningless.
"In 2007 we published the first paper that identified the first common height gene, and we have now identified nearly 700 genetic variants that are involved in determining height," says co-senior investigator Timothy Frayling, PhD, of the University of Exeter, U.K. "We believe that large genetic studies could yield similarly rich lists in a variety of other traits."
Biology of Height
Many of the 697 height-related genetic variants were located near genes known to be involved in growth, but there were also plenty of surprises...
"There were some pathways that we knew were important, but had not come out in previous GWAS," says Hirschhorn, who is also an endocrinologist at Boston Children's. "Many of the genes we identified are likely to be important regulators of skeletal growth, but were not known to be involved until now. Some may also be responsible for unexplained syndromes of abnormal skeletal growth in children. As you increase the sample size, you get more biology."
For example, the mTOR gene is well known to be involved in cellular growth, but had not previously been connected with human skeletal growth. Other genes confirmed as important include genes involved in metabolism of collagen (a component of bone) and chondroitin sulfate (a component of cartilage), as well as networks of genes active in growth plates, the area of growing tissue near the ends of the long bones. Still other genes point to biology whose relationship with height isn't yet known.
Among GIANT's future goals is to look at variants that occur at lower than 5 percent frequency, and to look for variants in the non-protein-coding portions of genes.
Childrens Height to Weight Chart | Adults Height to Weight Ratio Chart | Height Chart of Men and Women in Various Countries
Attribution/Source(s):
This quality-reviewed publication was selected for publishing by the editors of Disabled World due to its significant relevance to the disability community. Originally authored by Boston Children's Hospital, and published on 2014/10/11 (Edit Update: 2020/12/11), the content may have been edited for style, clarity, or brevity. For further details or clarifications, Boston Children's Hospital can be contacted at harvard.edu. NOTE: Disabled World does not provide any warranties or endorsements related to this article.
Page Information, Citing and Disclaimer
Disabled World is a comprehensive online resource that provides information and news related to disabilities, assistive technologies, and accessibility issues. Founded in 2004 our website covers a wide range of topics, including disability rights, healthcare, education, employment, and independent living, with the goal of supporting the disability community and their families.
Cite This Page (APA): Boston Children's Hospital. (2014, October 11 - Last revised: 2020, December 11). Over 400 Genes Linked to Height Determination. Disabled World. Retrieved September 10, 2024 from www.disabled-world.com/news/research/400-genes.php
Permalink: <a href="https://www.disabled-world.com/news/research/400-genes.php">Over 400 Genes Linked to Height Determination</a>: Largest genome-wide association study to date roughly doubles the number of known gene regions influencing human height to more than 400.
Disabled World provides general information only. Materials presented are never meant to substitute for qualified medical care. Any 3rd party offering or advertising does not constitute an endorsement.