Astrocytes: Treating ALS and Spinal Cord Injury

Topic: Regenerative Medicine
Author: University of Wisconsin-Madison
Published: 2015/02/02 - Updated: 2021/09/09
Contents: Summary - Introduction - Main Item - Related Topics

Synopsis: Findings may lay foundation for treatment of neurodegenerative diseases including amyotrophic lateral sclerosis and SCI. Astrocytes, so named because of their star shape, are thought to perform a number of important roles in the human brain and spinal cord, and in human health and disease. I really want to push hard to potentially treat spinal cord injury, and especially ALS. It's so devastating, and after so long, there is still no treatment.

Introduction

This story starts in 1955, upon the death of Albert Einstein, when the pathologist charged with performing the famous scientist's autopsy stole his brain.

Main Item

Astrocytes are characteristic star-shaped glial cells in the brain and spinal cord. They are the most abundant cells of the human brain. They perform many functions, including biochemical support of endothelial cells that form the blood-brain barrier, provision of nutrients to the nervous tissue, maintenance of extracellular ion balance, and a role in the repair and scarring process of the brain and spinal cord following traumatic injuries.

Fast forward to the 1980s when a University of California, Berkeley scientist was studying parts of the stolen goods involved in complex thinking and discovered that the father of relativity had more of certain types of cells, called astrocytes, than other human brains studied.

Today, another 30 years later, scientists still don't have a solid grasp on everything these cells do in the human nervous system, largely because they're difficult to study. But Su-Chun Zhang, a professor of neuroscience and neurology at the University of Wisconsin-Madison Waisman Center, and his research team have published a unique model for learning more about the role of human astrocytes in the Journal of Clinical Investigation.

The findings may lay a foundation for the treatment of a number of neurodegenerative diseases, including ALS (amyotrophic lateral sclerosis) and debilitating spinal cord injuries.

"We expect astrocytes may help neuronal survival and improve disease conditions in ALS and spinal cord injury," says Zhang. "Both studies are now ongoing because of these findings."

Astrocytes - so named because of their star shape - are thought to perform a number of important roles in the human brain and spinal cord, and in human health and disease. Animal studies show they are necessary for the development and maintenance of healthy neurons, proper nervous system signaling, and in the formation and maintenance of the crucial blood-brain barrier.

Defects in astrocyte function are associated with ALS and diseases like Rett syndrome, Alexander disease and Huntington's disease.

"We know very little about human astrocytes, yet people think they are crucial in human health and disease," says Zhang, also in the Departments of Neuroscience and Neurology at UW-Madison. "But studying astrocytes is very difficult."

This is especially true of studying human astrocytes in adults. Previous studies have used newborn mice, which provide a different biological environment for astrocytes, yet at least some of these neurodegenerative diseases, and many spinal cord injuries, occur in human adults.

Lead study author Hong Chen, a physician and scientist, transplanted immature human nervous system cells - generated from adult stem cells - into the spinal cords of mice. These cells matured into astrocytes.

The researchers checked in from time to time, and within nine months, found the astrocytes had traveled long distances along the mouse spinal cord, hugging the mouse neurons, connecting to blood vessels and joining with one another, just as mouse astrocytes do. They replaced the mouse astrocytes in the process, but did not affect the ability of the mice to function normally.

"It was shocking because how could that happen" Zhang says. "Even I could not explain it. I joked that the human astrocytes are smarter."

Zhang suspects what may actually be happening is the human astrocytes are out-dividing their smaller, mouse counterparts, developing in larger numbers and essentially "bullying" the mouse cells out.

The researchers repeated the experiments with astrocytes matured from human patients with ALS. The astrocytes replaced the mouse astrocytes, behaving just like those from non-ALS individuals, except they disrupted motor function in the mice, just like in ALS.

"They have problems with movement in their legs and were just beginning to show signs of neuron degeneration," says Zhang. "It shows it's not just a physical replacement, it's really a functional integration with consequence."

This is important to Zhang, who holds a medical degree and is driven to take the successes in the lab to human patients in the clinic.

"Because of my medicine background, I think about how stem cells can be utilized for medical purposes," he says. "I really want to push hard to potentially treat spinal cord injury, and especially ALS. It's so devastating, and after so long, there is still no treatment."

The study was supported by the National Institutes of Health, two families familiar with spinal cord injury - the Bleser Family Foundation and the Busta Foundation - and the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

Attribution/Source(s):

This quality-reviewed publication was selected for publishing by the editors of Disabled World due to its significant relevance to the disability community. Originally authored by University of Wisconsin-Madison, and published on 2015/02/02 (Edit Update: 2021/09/09), the content may have been edited for style, clarity, or brevity. For further details or clarifications, University of Wisconsin-Madison can be contacted at wisc.edu. NOTE: Disabled World does not provide any warranties or endorsements related to this article.

Explore Related Topics

1 - - A groundbreaking code of practice has been introduced for the use of stem cell-based embryo models in research.

2 - - Human pluripotent stem cells in a lab can initiate a process resembling the gastrulation phase - where cells begin differentiating into new cell types - much earlier than occurs in mother nature.

3 - - A tiny EEG electrode cap was created to measure activity in an organoid brain model the size of a pen dot to lead to a better understanding of neural disorders and how chemicals affect the brain.

4 - - Solely from stem cells, without egg, sperm or womb, synthetic mouse embryo models were created.

5 - - A multi-institutional effort is taking steps to develop an effective technique to regenerate photoreceptors cells and restore sight in people with vision disorders.

Complete List of Related Information

Page Information, Citing and Disclaimer

Disabled World is a comprehensive online resource that provides information and news related to disabilities, assistive technologies, and accessibility issues. Founded in 2004 our website covers a wide range of topics, including disability rights, healthcare, education, employment, and independent living, with the goal of supporting the disability community and their families.

Cite This Page (APA): University of Wisconsin-Madison. (2015, February 2 - Last revised: 2021, September 9). Astrocytes: Treating ALS and Spinal Cord Injury. Disabled World. Retrieved October 4, 2024 from www.disabled-world.com/news/research/stemcells/astrocytes.php

Permalink: <a href="https://www.disabled-world.com/news/research/stemcells/astrocytes.php">Astrocytes: Treating ALS and Spinal Cord Injury</a>: Findings may lay foundation for treatment of neurodegenerative diseases including amyotrophic lateral sclerosis and SCI.

Disabled World provides general information only. Materials presented are never meant to substitute for qualified medical care. Any 3rd party offering or advertising does not constitute an endorsement.