Leukemia Breakthrough May Pave the Way to New Treatments

Author: Griffith University
Published: 2013/03/15 - Updated: 2021/12/04
Category Topic: Leukemia - Academic Publications

Page Content: Synopsis - Introduction - Main

Synopsis: Critical weakness in leukemic cells may pave the way to treatment as leukemic cells can be eradicated by removing a carbohydrate modification displayed on the cell surface. Leukemia is defined as cancer that starts in blood-forming tissue such as the bone marrow and causes large numbers of blood cells to be produced and enter the bloodstream. White blood cells help your body fight infection.

Introduction

Breakthrough in battle against leukemia - Griffith University researchers find cancer cell weakness. The research team has demonstrated that leukemic cells can be eradicated by removing a carbohydrate modification displayed on the cell's surface.

Main Content

Leukemia is defined as cancer that starts in blood-forming tissue such as the bone marrow and causes large numbers of blood cells to be produced and enter the bloodstream. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood cells. These cells crowd out the healthy blood cells, making it hard for blood to do its work. There are different types of leukemia, including:

Director of Griffith University's Institute for Glycomics, Professor Mark von Itzstein is the Australian team leader. He said the discovery is an important advance against leukaemia, a cancer of malignant white blood cells that multiply uncontrollably. Acute lymphoblastic leukaemia (ALL) is the most common childhood cancer.

"We have found that the leukemic cell has an altered cell surface carbohydrate decoration compared to normal cells and this also conveys resistance to drug treatment," Professor von Itzstein said. "We have now shown that with the removal of this carbohydrate alteration the cells die."

Professors Nora Heisterkamp and John Groffen, leaders of the US-based team, Professor von Itzstein and their colleagues have published their research findings in the latest edition of the internationally acclaimed Journal of Experimental Medicine.

Professor von Itzstein said the research could lead to new ways to fight the disease, particularly where it has become treatment resistant.

"Up until 40 years ago, only one child in five survived ALL", but advances in chemotherapy have changed that outcome and now nearly 80 percent of children with ALL will be cured," Professor von Itzstein said.

"For the remaining 20 percent, however, the disease returns necessitating additional rounds of intensive chemotherapy. Unfortunately, most relapsed patients die within one year because their cancer cells are resistant to chemotherapy."

"In the future, we hope that this novel, structural approach to treating ALL may offer an effective treatment option for children battling drug-resistant forms of the disease."

Professor von Itzstein said the discovery had been made possible only through a unique sharing of research expertise.

"These results are the culmination of an international collaboration that commenced only a few years ago when Professor Groffen spent study leave in the Institute for Glycomics on Griffith's Gold Coast Campus," Professor von Itzstein said.

"It has been a wonderful opportunity to combine the US team's internationally acclaimed expertise in leukaemia with our own expertise in carbohydrate science."

"By exploiting this 'Achilles heel' in these leukemic cells, our collaborative research efforts are now focused on the development of a new type of drug therapy that targets this carbohydrate modification."

Patron of the Institute for Glycomics Leukaemia project in Australia, Air Chief Marshal Angus Houston AC, AFC (Ret'd), said he was delighted with this latest advance.

"These new findings provide the groundwork for a new fight against this terrible disease," he said.

Griffith University's Institute for Glycomics

Based at Griffith University's Gold Coast Campus, Australia, research at the Institute for Glycomics involves the study of the carbohydrates and carbohydrate-recognizing proteins in various biological systems, and the design of novel drugs and vaccines to treat or prevent clinically important diseases. This approach presents an exciting therapeutic platform for the control of a wide-range of medical conditions such as a variety of cancers, infectious diseases, inflammation and immune disorders. The Institute is the only one of its kind in Australia and only one of six in the world.


Attribution/Source(s): This quality-reviewed publication was selected for publishing by the editors of Disabled World (DW) due to its relevance to the disability community. Originally authored by Griffith University and published on 2013/03/15, this content may have been edited for style, clarity, or brevity.

Explore Similar Topics

: General information regarding Acute myelogenous leukemia (AML), a cancer of the bone marrow and blood.

: Taking a tablet twice daily instead of chemotherapy may turn chronic lymphocytic leukemia (CLL) into a highly treatable disease.

: A prototype developed by scientists shows artificial bone marrow may be used to reproduce hematopoietic stem cells.

▶ Share Page

Citing and References

Founded in 2004, Disabled World (DW) is a leading resource on disabilities, assistive technologies, and accessibility, supporting the disability community. (APA, MLA, Chicago, Permalink)

APA: Griffith University. (2013, March 15 - Last revised: 2021, December 4). Leukemia Breakthrough May Pave the Way to New Treatments. Disabled World (DW). Retrieved November 3, 2025 from www.disabled-world.com/health/cancer/leukemia/pave.php

MLA: Griffith University. "Leukemia Breakthrough May Pave the Way to New Treatments." Disabled World (DW), 15 Mar. 2013, revised 4 Dec. 2021. Web. 3 Nov. 2025. <www.disabled-world.com/health/cancer/leukemia/pave.php>.

Chicago: Griffith University. "Leukemia Breakthrough May Pave the Way to New Treatments." Disabled World (DW). Last modified December 4, 2021. www.disabled-world.com/health/cancer/leukemia/pave.php.

Permalink: <a href="https://www.disabled-world.com/health/cancer/leukemia/pave.php">Leukemia Breakthrough May Pave the Way to New Treatments</a>: Critical weakness in leukemic cells may pave the way to treatment as leukemic cells can be eradicated by removing a carbohydrate modification displayed on the cell surface.

While we strive to provide accurate and up-to-date information, it's important to note that our content is for general informational purposes only. We always recommend consulting qualified healthcare professionals for personalized medical advice. Any 3rd party offering or advertising does not constitute an endorsement.