Knee Meniscus Regenerated with 3D Printed Implant

Author: Columbia University Medical Center
Published: 2014/12/11 - Updated: 2020/11/09
Topic: Medical 3D Printing - Publications List

Page Content: Synopsis - Introduction - Main

Synopsis: Researchers have devised a way to replace the knees protective lining, called the meniscus, using a personalized 3D-printed implant, or scaffold. This research, although preliminary, demonstrates the potential for an innovative approach to meniscus regeneration...

Introduction

What is Meniscus?

A crescent-shaped fibrocartilaginous structure that, in contrast to articular disks, only partly divides a joint cavity. In humans they are present in the knee, acromioclavicular, sternoclavicular, and temporomandibular joints, as well as the radio-carpal joint. Generally, the term 'meniscus' often refers to the cartilage of the knee, either to the lateral and medial menisci. Both are cartilaginous tissues that provide structural integrity to the knee when it undergoes tension and torsion.

Main Item

Columbia University Medical Center researchers have devised a way to replace the knee's protective lining, called the meniscus, using a personalized 3D-printed implant, or scaffold, infused with human growth factors that prompt the body to regenerate the lining on its own. The therapy, successfully tested in sheep, could provide the first effective and long-lasting repair of damaged menisci, which occur in millions of Americans each year and can lead to debilitating arthritis. The paper was published today in the online edition of Science Translational Medicine.

"At present, there's little that orthopedists can do to regenerate a torn knee meniscus," said study leader Jeremy Mao, DDS, PhD, the Edwin S. Robinson Professor of Dentistry (in Orthopedic Surgery) at the Medical Center. "Some small tears can be sewn back in place, but larger tears have to be surgically removed. While removal helps reduce pain and swelling, it leaves the knee without the natural shock absorber between the femur and tibia, which greatly increases the risk of arthritis."

A damaged meniscus can be replaced with a meniscal transplant, using tissue from other parts of the body or from cadavers. That procedure, however, has a low success rate and carries significant risks. Approximately one million meniscus surgeries are performed in the United States each year.

Continued below image.
Left knee-joint from behind, showing interior ligaments.
Left knee-joint from behind, showing interior ligaments.
Continued...

Dr. Mao's approach starts with MRI scans of the intact meniscus in the undamaged knee.

The scans are converted into a 3D image. Data from the image are then used to drive a 3D printer, which produces a scaffold in the exact shape of the meniscus, down to a resolution of 10 microns (less than the width of a human hair). The scaffold, which takes about 30 minutes to print, is made of polycaprolactone, a biodegradable polymer that is also used to make surgical sutures.

The scaffold is infused with two recombinant human proteins: connective growth factor (CTGF) and transforming growth factor β3 (TGFβ3). Dr. Mao's team found that sequential delivery of these two proteins attracts existing stem cells from the body and induces them to form meniscal tissue.

For a meniscus to properly form, however, the proteins must be released in specific areas of the scaffold in a specific order.

This is accomplished by encapsulating the proteins in two types of slow-dissolving polymeric micro-spheres, first releasing CTGF (to stimulate production of the outer meniscus) and then TGFβ3 (to stimulate production of the inner meniscus). Finally, the protein-infused scaffold is inserted into the knee. In sheep, the meniscus regenerates in about four to six weeks. Eventually, the scaffold dissolves and is eliminated by the body.

"This is a departure from classic tissue engineering, in which stems cells are harvested from the body, manipulated in the laboratory, and then returned to the patient - an approach that has met with limited success," said Dr. Mao. "In contrast, we're jump-starting the process within the body, using factors that promote endogenous stem cells for tissue regeneration."

"This research, although preliminary, demonstrates the potential for an innovative approach to meniscus regeneration," said co-author Scott Rodeo, MD, sports medicine orthopedic surgeon and researcher at Hospital for Special Surgery in New York City. "This would potentially be applicable to the many patients who undergo meniscus removal each year."

The process was tested in 11 sheep (whose knee closely resembles that of humans).

The animals were randomized to have part of their knee meniscus replaced with a protein-infused 3D scaffold (the treatment group) or a 3D scaffold without protein (the non-treatment group). After three months, treated animals were walking normally. In a postmortem analysis, the researchers found that the regenerated meniscus in the treatment group had structural and mechanical properties very similar to those of natural meniscus. They are now conducting studies to determine whether the regenerated tissue is long-lasting.

"We envision that personalized meniscus scaffolds, from initial MRI to 3D printing, could be completed within days," said Dr. Mao. The personalized scaffolds will then be shipped to clinics and hospitals within a week. The researchers hope to begin clinical trials once funding is in place.

"These studies provide clinically valuable information on the use of meniscal regeneration in the knees of patients with torn or degenerate menisci," said Lisa Ann Fortier, DVM, professor of large animal surgery at Cornell University College of Veterinary Medicine in Ithaca, N.Y. "As a veterinary orthopedic surgeon-scientist on this multi-disciplinary team, I foresee the added bonus of having new techniques for treating veterinary patients with torn knee meniscus."

The article is titled, "Protein-Releasing Polymeric Scaffolds Induce Fibrochondrocytic Differentiation of Endogenous Cells for Knee Meniscus Regeneration in Sheep." The other contributors are Chang H. Lee, Chuanyong Lu, and Cevat Erisken, all at CUMC. Scott Rodeo of the Hospital for Special Surgery and Lisa Fortier of Cornell University are two significant collaborators. The authors declare no financial or other conflicts of interest.

The study was funded by grants from the National Institutes of Health (AR065023 and EB009663) jointly to Jeremy Mao, Scott Rodeo, and Lisa Fortier; the Arthroscopy Association of North America; the American Orthopaedic Society for Sports Medicine; and the Harry M. Zweig Foundation.

Attribution/Source(s): This quality-reviewed publication was selected for publishing by the editors of Disabled World (DW) due to its relevance to the disability community. Originally authored by Columbia University Medical Center and published on 2014/12/11, this content may have been edited for style, clarity, or brevity. For further details or clarifications, Columbia University Medical Center can be contacted at Karin Eskenazi - ket2116@cumc.columbia.edu NOTE: Disabled World does not provide any warranties or endorsements related to this article.

Explore Similar Topics

: A 3D bioprinter privately owned by an American company has successfully printed with a large volume of human heart cells aboard the International Space Station (ISS) U.S. National Laboratory.

: 3D printing technique enables faster, better, and cheaper models of patient specific medical data for research and diagnosis.

Citing and References

Founded in 2004, Disabled World (DW) is a leading resource on disabilities, assistive technologies, and accessibility, supporting the disability community. Learn more on our About Us page.

Cite This Page: Columbia University Medical Center. (2014, December 11 - Last revised: 2020, November 9). Knee Meniscus Regenerated with 3D Printed Implant. Disabled World (DW). Retrieved April 25, 2025 from www.disabled-world.com/news/research/3d-printing/meniscus.php

Permalink: <a href="https://www.disabled-world.com/news/research/3d-printing/meniscus.php">Knee Meniscus Regenerated with 3D Printed Implant</a>: Researchers have devised a way to replace the knees protective lining, called the meniscus, using a personalized 3D-printed implant, or scaffold.

While we strive to provide accurate and up-to-date information, it's important to note that our content is for general informational purposes only. We always recommend consulting qualified healthcare professionals for personalized medical advice. Any 3rd party offering or advertising does not constitute an endorsement.