Ultra-thin Optical Fibers Provide Way to Print 3D Microstructures

Medical 3D Printing

Author: The Optical Society
Published: 2018/01/17 - Updated: 2019/03/19
Contents: Summary - Introduction - Main - Related

Synopsis: A thin optical fiber can be used to create microscopic structures with laser-based 3D printing that could be used with an endoscope to fabricate tiny biocompatible structures directly into tissue inside the body.

Introduction

For the first time, researchers have shown that an optical fiber as thin as a human hair can be used to create microscopic structures with laser-based 3D printing. The innovative approach might one day be used with an endoscope to fabricate tiny biocompatible structures directly into tissue inside the body. This capability could enable new ways to repair tissue damage.

Main Digest

"With further development our technique could enable endoscopic microfabrication tools that would be valuable during surgery," said research team leader Paul Delrot, from École Polytechnique Fédérale de Lausanne, Switzerland. "These tools could be used to print micro- or nano-scale 3D structures that facilitate the adhesion and growth of cells to create engineered tissue that restores damaged tissues."

In The Optical Society (OSA) journal Optics Express, the researchers show that their new approach can create microstructures with a 1.0-micron lateral (side-to-side) and 21.5-micron axial (depth) printing resolution. Although these microstructures were created on a microscope slide, the approach could be useful for studying how cells interact with various microstructures in animal models, which would help pave the way for endoscopic printing in people.

To create the microstructures, the researchers dipped the end of an optical fiber into a liquid known as photopolymer that solidifies, or cures, when illuminated with a specific color of light. They used the optical fiber to deliver and digitally focus laser light point-by-point into the liquid to build a three-dimensional microstructure.

By printing delicate details onto large parts, the new ultra-compact microfabrication tool could also be a useful add-on to today's commercially available 3D printers that are used for everything from rapid prototyping to making personalized medical devices. "By using one printer head with a low resolution for the bulk parts and our device as a secondary printer head for the fine details, multi-resolution additive manufacturing could be achieved," said Delrot.

Simplifying the Setup

Continued below image.
Researchers used an optical fiber housed inside the needle pictured to deliver light for 3-D printing microstructures. The light selectively hardens volumes inside the droplet of photopolymer on the glass slide. The new system could one day allow 3-D printing inside the body - Image Credit: Damien Loterie and Paul Delrot, École Polytechnique Fédérale de Lausanne.
Researchers used an optical fiber housed inside the needle pictured to deliver light for 3-D printing microstructures. The light selectively hardens volumes inside the droplet of photopolymer on the glass slide. The new system could one day allow 3-D printing inside the body - Image Credit: Damien Loterie and Paul Delrot, École Polytechnique Fédérale de Lausanne.
Continued...

Current laser-based microfabrication techniques rely on a non-linear optical phenomenon called two-photon photopolymerization to selectively cure a volume deep inside a liquid photosensitive material. These techniques are difficult to use for biomedical applications because two-photon photopolymerization requires complex and expensive lasers that emit very short pulses as well as bulky optical systems to deliver the light.

"Our group has expertise in manipulating and shaping light through optical fibers, which led us to think that microstructures could be printed with a compact system. In addition, to make the system more affordable, we took advantage of a photopolymer with a nonlinear dose response. This can work with a simple continuous-wave laser, so expensive pulsed lasers were not required," said Delrot.

To selectively cure a specific volume of material, the researchers took advantage of a chemical phenomenon in which solidification only occurs above a certain threshold in light intensity. By performing a detailed study of the light scanning parameters and the photopolymer's behavior, the researchers discovered the best parameters for using this chemical phenomenon to print microstructures using a low-power, inexpensive laser that emits continuously (rather than pulsed).

To create hollow and solid microstructures, the researchers used an organic polymer precursor doped with photoinitiator made of off-the-shelf chemical components. They focused a continuous-wave laser emitting light at 488-nanometer wavelength - visible-wavelength light that is potentially safe for cells - through an optical fiber small enough to fit in a syringe. Using an approach known as wavefront shaping they were able to focus the light inside the photopolymer so that only a small 3D point was cured. Performing a calibration step prior to microfabrication allowed them to digitally focus and scan laser light through the ultra-thin optical fiber without moving the fiber.

"Compared to two-photon photopolymerization state-of-the-art systems, our device has a coarser printing resolution, however, it is potentially sufficient to study cellular interactions and does not require bulky optical systems nor expensive pulsed lasers," said Delrot. "Since our approach doesn't require complex optical components, it could be adapted to use with current endoscopic systems."

Moving Toward Clinical Use

Continued below image.
Using an inexpensive laser and an ultrathin optical fiber, the researchers created hollow microstructures such as the one shown here. They were able to create microstructures with a 1.0-micron lateral (side-to-side) and 21.5-micron axial (depth) printing resolution - Image Credit: Paul Delrot, École Polytechnique Fédérale de Lausanne.
Using an inexpensive laser and an ultrathin optical fiber, the researchers created hollow microstructures such as the one shown here. They were able to create microstructures with a 1.0-micron lateral (side-to-side) and 21.5-micron axial (depth) printing resolution - Image Credit: Paul Delrot, École Polytechnique Fédérale de Lausanne.
Continued...

The researchers are working to develop biocompatible photopolymers and a compact photopolymer delivery system, which are necessary before the technique could be used in people. A faster scanning speed is also needed, but in cases where the instrument size is not critical, this limitation could be overcome by using a commercial endoscope instead of the ultra-thin fiber. Finally, a technique to finalize and post-process the printed structure inside the body is required to create microstructures with biomedical functions.

"Our work shows that 3D microfabrication can be achieved with techniques other than focusing a high-power femtosecond pulsed laser," said Delrot. "Using less complex lasers or light sources will make additive manufacturing more accessible and create new opportunities of applications such as the one we demonstrated."

Optics Express and The Optical Society

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by The Optical Society and edited by Andrew M. Weiner of Purdue University. Optics Express is an open-access journal and is available at no cost to readers online at: OSA Publishing.

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org

Paper: P. Delrot, D. Loterie, D. Psaltis, C. Moser, "Single-photon three-dimensional microfabrication through a multimode optical fiber," Opt. Express, Volume 26, Issue 2, 1766-1778 (2018). DOI: 10.1364/OE.26.001766.

Attribution/Source(s):

This quality-reviewed publication was selected for publishing by the editors of Disabled World due to its significant relevance to the disability community. Originally authored by The Optical Society, and published on 2018/01/17 (Edit Update: 2019/03/19), the content may have been edited for style, clarity, or brevity. For further details or clarifications, The Optical Society can be contacted at osa.org (@opticalsociety). NOTE: Disabled World does not provide any warranties or endorsements related to this article.

Related Publications

Share This Information To:
𝕏.com Facebook Reddit

Page Information, Citing and Disclaimer

Disabled World is an independent disability community founded in 2004 to provide news and information to people with disabilities, seniors, their family and carers. We'd love for you to follow and connect with us on social media!

Cite This Page (APA): The Optical Society. (2018, January 17 - Last revised: 2019, March 19). Ultra-thin Optical Fibers Provide Way to Print 3D Microstructures. Disabled World. Retrieved July 16, 2024 from www.disabled-world.com/news/research/3d-printing/microstructures.php

Permalink: <a href="https://www.disabled-world.com/news/research/3d-printing/microstructures.php">Ultra-thin Optical Fibers Provide Way to Print 3D Microstructures</a>: A thin optical fiber can be used to create microscopic structures with laser-based 3D printing that could be used with an endoscope to fabricate tiny biocompatible structures directly into tissue inside the body.

Disabled World provides general information only. Materials presented are never meant to substitute for qualified medical care. Any 3rd party offering or advertising does not constitute an endorsement.