Print Page

Paralyzed Patient Feels Sensation Again by Stimulating Brain

Author: California Institute of Technology
Published: 2018/04/10
Topic: The Human Brain (Publications Database)

Page Content: Synopsis Introduction Main Item

Synopsis: Using a tiny array of electrodes implanted in the brain somatosensory cortex, Caltech scientists have induced sensations of touch and movement in the arm of a paralyzed man.

Introduction

For the first time, scientists at Caltech have induced natural sensations in the arm of a paralyzed man by stimulating a certain region of the brain with a tiny array of electrodes. The patient has a high-level spinal cord lesion and, besides not being able to move his limbs, also cannot feel them. The work could one day allow paralyzed people using prosthetic limbs to feel physical feedback from sensors placed on these devices.

Main Item

The research was done in the laboratory of Richard Andersen, James G. Boswell Professor of Neuroscience, T&C Chen Brain-Machine Interface Center Leadership Chair, and director of the T&C Chen Brain-Machine Interface Center. A paper describing the work appears in the April 10 issue of the journal eLife.

The somatosensory cortex is a strip of brain that governs bodily sensations, both proprioceptive sensations (sensations of movement or the body's position in space) and cutaneous sensations (those of pressure, vibration, touch, and the like). Previous to the new work, neural implants targeting similar brain areas predominantly produced sensations such as tingling or buzzing in the hand. The Andersen lab's implant is able to produce much more natural sensation via intracortical stimulation, akin to sensations experienced by the patient prior to his injury.

Continued below image.
fMRI is used to highlight select implant sites in the somatosensory cortex. Electrodes implanted in this region were able to stimulate neurons that produced physical sensations, like a squeeze or tap, in the arm of a paralyzed man. Image Courtesy of the Andersen lab.
fMRI is used to highlight select implant sites in the somatosensory cortex. Electrodes implanted in this region were able to stimulate neurons that produced physical sensations, like a squeeze or tap, in the arm of a paralyzed man. Image Courtesy of the Andersen lab.
Continued...

The patient had become paralyzed from the shoulders down three years ago after a spinal cord injury. Two arrays of tiny electrodes were surgically inserted into his somatosensory cortex. Using the arrays, the researchers stimulated neurons in the region with very small pulses of electricity. The participant reported feeling different natural sensations-such as squeezing, tapping, a sense of upward motion, and several others-that would vary in type, intensity, and location depending on the frequency, amplitude, and location of stimulation from the arrays. It is the first time such natural sensations have been induced by intracortical neural stimulation.

"It was quite interesting," the study participant says of the sensations. "It was a lot of pinching, squeezing, movements, things like that. Hopefully it helps somebody in the future."

Though different types of stimulation did indeed induce varying sensations, the neural codes governing specific physical sensations are still unclear. In future work, the researchers hope to determine the precise ways to place the electrodes and stimulate somatosensory brain areas in order to induce specific feelings and create a kind of dictionary of stimulations and their corresponding sensations.

The next major step, according to Andersen, is to integrate the technology with existing neural prosthetics. In 2015, Andersen's laboratory developed brain-machine interfaces (BMIs) to connect a prosthetic robotic arm to electrodes implanted in the region of the brain that governs intentions. In this way, a paralyzed man was able to utilize the prosthetic arm to reach out, grasp a cup, and bring it to his mouth to take a drink. Connecting the device with the somatosensory cortex would create bidirectional BMIs that would enable a paralyzed person to feel again, while using prosthetic limbs.

"Currently the only feedback that is available for neural prosthetics is visual, meaning that participants can watch the brain-controlled operation of robotic limbs to make corrections," says Andersen. "However, once an object is grasped, it is essential to also have somatosensory information to dexterously manipulate the object. Stimulation-induced somatosensory sensations have the potential added advantage of producing a sense of embodiment; for example, a participant may feel over time that the robotic limb is a part of their body."

The study is titled "Proprioceptive and Cutaneous Sensations in Humans Elicited by Intracortical Microstimulation." First authors on the paper are postdoctoral scholars Michelle Armenta Salas and Luke Bashford, and scientific researcher Spencer Kellis. Other Caltech co-authors are graduate students Matiar Jafari and HyeongChan Jo, and laboratory manager Kelsie Pejsa. Additional co-authors are Daniel Kramer, Brian Lee, and Charles Liu of the Keck School of Medicine at USC; and Kathleen Shanfield of the Rancho Los Amigos National Rehabilitation Center. Funding was provided by the U.S. Department of Health and Human Services, the National Institutes of Health, the National Institute of Neurological Disorders and Stroke, the Tianqiao and Chrissy Chen Brain-Machine Interface Center, the Della Martin Foundation, the Boswell Foundation, the National Science Foundation, and the David Geffen Medical Scholarship.

Richard Andersen is an affiliated faculty member of the Tianqiao and Chrissy Chen Institute for Neuroscience at Caltech.

Attribution/Source(s):

This quality-reviewed publication was selected for publishing by the editors of Disabled World due to its significant relevance to the disability community. Originally authored by California Institute of Technology, and published on 2018/04/10, the content may have been edited for style, clarity, or brevity. For further details or clarifications, California Institute of Technology can be contacted at caltech.edu. NOTE: Disabled World does not provide any warranties or endorsements related to this article.

Explore Similar Topics

1 - - What determines how the brain divides the day into individual events that we can understand and remember separately.

2 - - Researchers uncover how memory maintenance and deletion shape cognitive decline in aging.

3 - - Tuning into interoception, how someone senses their body’s internal state, is an important component of mindfulness training that could aid in managing mood disorders such as depression.

Complete Publications Database

Page Information, Citing and Disclaimer

Disabled World is a comprehensive online resource that provides information and news related to disabilities, assistive technologies, and accessibility issues. Founded in 2004 our website covers a wide range of topics, including disability rights, healthcare, education, employment, and independent living, with the goal of supporting the disability community and their families.

Cite This Page (APA): California Institute of Technology. (2018, April 10). Paralyzed Patient Feels Sensation Again by Stimulating Brain. Disabled World. Retrieved November 13, 2024 from www.disabled-world.com/health/neurology/brain/somatosensory-cortex.php

Permalink: <a href="https://www.disabled-world.com/health/neurology/brain/somatosensory-cortex.php">Paralyzed Patient Feels Sensation Again by Stimulating Brain</a>: Using a tiny array of electrodes implanted in the brain somatosensory cortex, Caltech scientists have induced sensations of touch and movement in the arm of a paralyzed man.

Disabled World provides general information only. Materials presented are never meant to substitute for qualified medical care. Any 3rd party offering or advertising does not constitute an endorsement.