Immune Cells Play Role in Cystic Fibrosis Lung Damage

Author: Stanford University Medical Center
Published: 2009/03/17
Topic: Cystic Fibrosis (CF) - Publications List

Page Content: Synopsis - Introduction - Main

Synopsis: Immune cells play surprising role in cystic fibrosis lung damage Stanford Packard study shows.

Introduction

Immune cells play surprising role in cystic fibrosis lung damage, Stanford/Packard study shows. Immune cells once thought to be innocent bystanders in cystic fibrosis may hold the key to stopping patients' fatal lung disease.

Main Item

Immune cells play surprising role in cystic fibrosis lung damage, Stanford/Packard study shows

Immune cells once thought to be innocent bystanders in cystic fibrosis may hold the key to stopping patients' fatal lung disease. New findings from the Stanford University School of Medicine and Lucile Packard Children's Hospital show that white blood cells called neutrophils respond strongly to conflicting signals from cystic fibrosis patients' lungs, setting up a molecular fracas that may explain the patients' severe lung damage.

"Cystic fibrosis patients have a problem with turning down the inflammatory response in the lungs," said senior study author Rabindra Tirouvanziam, PhD, an instructor in pediatric pulmonary medicine. "We've found that patients' neutrophils become kind of schizophrenic, doing a number of things that are opposite to the textbook view of neutrophils' role."

The research, which will be published online March 23 in the Proceedings of the National Academy of Sciences, opens up new targets for cystic fibrosis treatment, Tirouvanziam said.

Cystic fibrosis is a genetic disease of the lungs and digestive system that affects about 30,000 people in the United States. Patients used to die in childhood, but the life expectancy for a child born today with cystic fibrosis is now 50 to 60 years. Although modern medications and dietary treatments do a good job of controlling the digestive aspects of the disease, patients still suffer serious lung problems. Thick, sticky mucus builds up in their lungs, and chronic inflammation and bacterial infections lead to the breakdown of lung tissue.

For years, scientists believed that cystic fibrosis patients' lung problems started when bacteria became trapped in the excess mucus in their lungs. Neutrophils showed up at the lungs in response to the invasive bacteria, the thinking went. Neutrophils are supposed to engulf and destroy bacteria, but something went wrong and the neutrophils quickly died in the lung, releasing tissue-destroying enzymes, scientists thought.

"This paradigm makes sense in a superficial way, but it has very little to do with clinical reality," Tirouvanziam said. Careful clinical testing in infants with cystic fibrosis has shown that lung inflammation with neutrophils occurs even in the absence of detectable infection. And Tirouvanziam's earlier research showed the immune cells stay alive in the lung for quite a while after they arrive.

So what are the live neutrophils doing in patients' lungs? The new findings surprised Tirouvanziam's team. After collecting fresh neutrophils from cystic fibrosis patients' sputum and analyzing them with fluorescence-activated cell sorting, the team discovered that signals from the patients' lung tissue were reprogramming live neutrophils with conflicting messages. The first set of signals switches on what Tirouvanziam calls "an ancient happiness pathway" "a chain of commands that tell the neutrophils that nutrients are plentiful, and that it's a good time to translate the cell's library of genes into new protein. The second pathway is a cellular alarm system associated with inflammation and stress.

"They're receiving a lot of signals at same time, and we think the happiness signals are messing them up completely," Tirouvanziam said.

His team now suspects the inappropriate activation of the "happiness signal" "the molecular target of rapamycin, or mTOR, cell signaling pathway "may trigger neutrophils to release large quantities of human neutrophil elastase, the enzyme that destroys the elastic fiber of lung tissue. In healthy individuals, neutrophils never release destructive human neutrophil elastase into nearby tissue.

Understanding the sequence of events that release the tissue-chewing enzyme in cystic fibrosis is important, Tirouvanziam said, because it could help researchers find new disease therapies. Drugs now given to improve patients' lung function target symptoms such as difficulty breathing, but don't do anything to alter neutrophils' behavior. Tirouvanziam hopes that will soon change.

Reference: The Stanford research team included research assistants Megha Makam and Daisy Diaz; graduate student Julie Laval; postdoctoral scholar Yael Gernez, MD; associate professor of pediatrics and director of the pediatric lung and heart-lung transplant program Carol Conrad, MD; research coordinators Colleen Dunn and Zoe Davies; professor of pediatrics Richard Moss, MD; professor emeritus of genetics Leonard Herzenberg, PhD; and professor of genetics Leonore Herzenberg, PhD. The research was funded by grants from the Cystic Fibrosis Foundation, the Stanford SPARK Program, the Stanford Center for Clinical and Translational Education and Research Program and the Skippy and Sidney Frank Foundation.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions "Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children's Hospital at Stanford. For more information, please visit the Web site of the medical center's Office of Communication & Public Affairs at mednews.stanford.edu.

Ranked as one of the best pediatric hospitals in the nation by U.S. News & World Report and Child magazine, Lucile Packard Children's Hospital at Stanford is a 272-bed hospital devoted to the care of children and expectant mothers. Providing pediatric and obstetric medical and surgical services and associated with the Stanford University School of Medicine, Packard Children's offers patients locally, regionally and nationally the full range of health care programs and services "from preventive and routine care to the diagnosis and treatment of serious illness and injury. For more information, visit www.lpch.org

Explore Similar Topics

- LMU student Caroline Schambeck has Cystic fibrosis, a genetic disease, but she does not let her illness dominate her life.

- Human growth hormone can be used successfully to treat some symptoms of cystic fibrosis.

Citing Information and Page References

Disabled World (DW) is a comprehensive online resource providing information and news related to disabilities, assistive technologies, and accessibility. Founded in 2004 our website covers a wide range of topics, including disability rights, healthcare, education, employment, and independent living, with the goal of supporting the disability community and their families.

Cite This Page (APA): Stanford University Medical Center. (2009, March 17). Immune Cells Play Role in Cystic Fibrosis Lung Damage. Disabled World (DW). Retrieved February 16, 2025 from www.disabled-world.com/health/respiratory/cystic-fibrosis/immune-cells-role.php

Permalink: <a href="https://www.disabled-world.com/health/respiratory/cystic-fibrosis/immune-cells-role.php">Immune Cells Play Role in Cystic Fibrosis Lung Damage</a>: Immune cells play surprising role in cystic fibrosis lung damage Stanford Packard study shows.

While we strive to provide accurate and up-to-date information, it's important to note that our content is for general informational purposes only. We always recommend consulting qualified healthcare professionals for personalized medical advice. Any 3rd party offering or advertising does not constitute an endorsement.