Myelofibrosis - New Potential Treatment
Topic: Medical Research News
Author: Boston University School of Medicine
Published: 2011/06/23
Contents: Summary - Introduction - Main - Related
Synopsis: New study sheds light on possible new approach to treat the bone marrow disease known as myelofibrosis by inhibiting an enzyme that connects extracellular fibers.
Introduction
Myelofibroisis, which currently affects between 16,000 and 18,500 Americans, occurs when bone marrow is replaced by scar tissue, resulting in a disruption in blood cell production.Main Digest
A new study conducted by a team of researchers at Boston University School of Medicine (BUSM) sheds light on a possible new approach to treat the bone marrow disease known as myelofibrosis by inhibiting an enzyme that connects extracellular fibers. The study, published online in the Journal of Biological Chemistry, was conducted under the direction of Katya Ravid, PhD, professor of medicine and biochemistry and director of the Evans Center for Interdisciplinary Biomedical Research at BUSM.
Myelofibroisis, which currently affects between 16,000 and 18,500 Americans, occurs when bone marrow is replaced by scar tissue, resulting in a disruption in blood cell production.
Blood cells originate from precursor stem cells, which typically reside in the bone marrow. Red and white blood cells are categorized as cells with a myeloid lineage, which also includes megakaryocytic cells that give rise to blood-clotting platelets. An excess proliferation of myeloid cells causes a surplus production of fibers outside of the cell, which forms a dense matrix within the bone marrow that disrupts the formation of these blood cells.
Previous research has shown that the enzyme lysyl oxidase links and stabilizes the extracellular fibers, but as of yet, a treatment aimed at inhibiting the formation of these fibers has not been successful. Ravid's team demonstrated that inhibiting that enzyme using pharmacologic agents resulted in a significant decrease in the burden of myelofibrosis.
The team's investigation, which used a mouse model with a dense matrix, showed that while the megakaryotic cells that proliferate express high levels of lysyl oxidase, the normal, mature megakaryotic cells express scarce levels of the enzyme. The group also determined that lysyl oxidase boosts the proliferation of these cells, and also identified the mechanism that causes that to happen.
"This study uncovers a potential new approach aimed at controlling and treating myelofibrosis," said senior author Ravid. "This discovery will allow additional research in the field of leukemia to follow a new avenue with the potential of finding new treatments against the disease.
Other BUSM researchers involved with this study include Alexia Eliades, PhD, Nicholas Papadantonakis, MD, Ajoy Bhupatiraj, PhD, Kelly Burridge , PhD, Hillary Johnston-Cox, BA, Hector Lucero, PhD and Philip Trackman, PhD. Anna Rita Migliaccio, PhD, from Mt. Sinai School of Medicine and John Crispino, PhD, from Northwestern University Medical School, also contributed to the study. Funding for this study was provided by the National Institutes of Health's National Heart, Lung and Blood Institute.
About Boston University School of Medicine - Originally established in 1848 as the New England Female Medical College, and incorporated into Boston University in 1873, Boston University School of Medicine today is a leading academic medical center with an enrollment of more than 700 medical students and more than 800 masters and PhD students. Its 1,246 full and part-time faculty members generated more than $335 million in funding in the 2009-2010 academic year for research in amyloidosis, arthritis, cardiovascular disease, cancer, infectious disease, pulmonary disease and dermatology among others. The School is affiliated with Boston Medical Center, its principal teaching hospital, the Boston and Bedford Veterans Administration Medical Centers and 16 other regional hospitals as well as the Boston HealthNet.
Page Information, Citing and Disclaimer
Disabled World is a comprehensive online resource that provides information and news related to disabilities, assistive technologies, and accessibility issues. Founded in 2004 our website covers a wide range of topics, including disability rights, healthcare, education, employment, and independent living, with the goal of supporting the disability community and their families.
Cite This Page (APA): Boston University School of Medicine. (2011, June 23). Myelofibrosis - New Potential Treatment. Disabled World. Retrieved September 17, 2024 from www.disabled-world.com/news/research/myelofibrosis.php
Permalink: <a href="https://www.disabled-world.com/news/research/myelofibrosis.php">Myelofibrosis - New Potential Treatment</a>: New study sheds light on possible new approach to treat the bone marrow disease known as myelofibrosis by inhibiting an enzyme that connects extracellular fibers.
Disabled World provides general information only. Materials presented are never meant to substitute for qualified medical care. Any 3rd party offering or advertising does not constitute an endorsement.