Print Page

Cause of Eye Mobility Disorder Revealed

Author: University of Iowa - Contact: Steve Kehoe - steve-kehoe@uowa.edu - Ph. 319-335-1050
Published: 2014/04/19
Topic: Blindness and Vision Loss (Publications Database)

Page Content: Synopsis Introduction Main Item

Synopsis: Researchers worked on a developmental study to find the point at which normal development of eye muscle innervations departs from the mutants.

Introduction

Imagine you cannot move your eyes up, and you cannot lift your upper eyelid. You walk through life with your head tilted upward so that your eyes look straight when they are rolled down in the eye socket. Obviously, such a condition should be corrected to allow people a normal position of their head. In order to correct this condition, one would need to understand why this happens.

Main Item

In a paper published in the April 16 print issue of the journal Neuron, University of Iowa researchers Bernd Fritzsch and Jeremy Duncan and their colleagues at Harvard Medical School, along with investigator and corresponding author Elizabeth Engle, describe how their studies on mutated mice mimic human mutations.

It all started when Engle, a researcher at the Howard Hughes Medical Institute (HHMI), and Fritzsch, professor and departmental executive officer in the UI College of Liberal Arts and Sciences Department of Biology, began their interaction on the stimulation of eye muscles by their nerves, or "innervation," around 20 years ago.

Continued below image.
The image depicts mice having a normal nerve (left) as compared to an incomplete nerve, a condition resulting in permanent downward gaze in both mice and humans. Image courtesy of Jeremy Duncan.
The image depicts mice having a normal nerve (left) as compared to an incomplete nerve, a condition resulting in permanent downward gaze in both mice and humans. Image courtesy of Jeremy Duncan.
Continued...

Approximately 10 years ago, Engle had identified the mutated genes in several patients with the eye movement disorder and subsequently developed a mouse with the same mutation she had identified in humans. However, while the effect on eye muscle innervation was comparable, there still was no clue as to why this should happen.

Fritzsch and his former biology doctoral student, Jeremy Duncan, worked with the Harvard researchers on a developmental study to find the point at which normal development of eye muscle innervations departs from the mutants. To their surprise, it happened very early in development. In fact, they found only in mutant mice a unique swelling in one of the nerves to the eye muscle.

More detailed analysis showed that these swellings came about because fibers extending to the eyes from the brain tried to leave the nerve as if they were already in the orbit, or eye socket. Since it happened so early, the researchers reasoned that something must be transported more effectively by this mutation to the motor neurons trying to reach the orbit and the eye muscles; something must be causing these motor neurons to assume they have already reached their target, the orbit of the eye.

To verify this enhanced function, the researchers developed another mouse that lacked the specific protein and found no defects in muscle innervation. Moreover, when they bred mice that carried malformed proteins with those that had none of these proteins, the mice developed a normal innervation.

This data provided clear evidence of what was going wrong and why, but it did not provide a clue as to the possible product that was more effectively transported in the mutant mice and, by logical extension, in humans. Further analysis revealed that breeding their mutant mice with another mutant having eye muscle innervation defects could enhance the effect of either mutation.

With this finding, they had identified the mutated protein, its enhanced function, and at least some of the likely cargo transported by this protein to allow normal innervation of eye muscles. This data provides the necessary level of understanding to design rational approaches to block the defect from developing.

Knowing what goes wrong and at what time during development can allow the problem to be corrected before it develops through proper manipulations. Engle, Fritzsch, and their collaborators currently are designing new approaches to rescue normal innervation in mice. In the future, their work may help families carrying such genetic mutations to have children with normal eye movement.

The title of the Neuron paper is "Human CFEOM1 Mutations Attenuate KIF21A Auto-inhibition and Cause Oculomotor Axon Stalling."

The research was supported by a National Institutes of Health (NIH) grant to Engle and colleague Fritzsch and HHMI funding to Engle.

Explore Similar Topics

1 - - If you're born blind, you'll likely never have experienced a magic trick, so can we create tricks that could be enjoyed by people with blindness.

2 - - Research finds blinking plays a pivotal role in processing visual information thus adding to a growing body of evidence revising conventional views of vision.

3 - - Scientists revive light-sensing neuron cells in organ donor eyes and restore communication between them as part of a series of discoveries that stand to transform brain and vision research.


Page Information, Citing and Disclaimer

Disabled World is a comprehensive online resource that provides information and news related to disabilities, assistive technologies, and accessibility issues. Founded in 2004 our website covers a wide range of topics, including disability rights, healthcare, education, employment, and independent living, with the goal of supporting the disability community and their families.

Cite This Page (APA): University of Iowa. (2014, April 19). Cause of Eye Mobility Disorder Revealed. Disabled World. Retrieved December 10, 2024 from www.disabled-world.com/disability/types/vision/cmd-cause.php

Permalink: <a href="https://www.disabled-world.com/disability/types/vision/cmd-cause.php">Cause of Eye Mobility Disorder Revealed</a>: Researchers worked on a developmental study to find the point at which normal development of eye muscle innervations departs from the mutants.

While we strive to provide accurate and up-to-date information, it's important to note that our content is for general informational purposes only. We always recommend consulting qualified healthcare professionals for personalized medical advice. Any 3rd party offering or advertising does not constitute an endorsement.