Hand Movement Using Brain Signals for Movement Impaired

Topic: Prostheses - Prosthetics
Author: Society for Neuroscience
Published: 2010/03/03
Contents: Summary - Introduction - Main - Related

Synopsis: System could potentially operate a robotic arm or motorized wheelchair for people with disabilities or paralysis.

Introduction

Researchers reconstruct 3-D hand movement using brain signals - Study suggests future portable prosthetic devices for movement-impaired...

Main Digest

Researchers have successfully reconstructed 3-D hand motions from brain signals recorded in a non-invasive way, according to a study in the March 3 issue of The Journal of Neuroscience. This finding uses a technique that may open new doors for portable brain-computer interface systems. Such a non-invasive system could potentially operate a robotic arm or motorized wheelchair, a huge advance for people with disabilities or paralysis.

Until now, to reconstruct hand motions, researchers have used non-portable and invasive methods that place sensors inside the brain. In this study, a team of neuroscientists led by Jose Contreras-Vidal, PhD, of the University of Maryland, College Park, placed an array of sensors on the scalps of five participants to record their brains' electrical activity, using a process called electroencephalography, or EEG. Volunteers were asked to reach from a center button and touch eight other buttons in random order 10 times, while the authors recorded their brain signals and hand motions. Afterward, the researchers attempted to decode the signals and reconstruct the 3-D hand movements.

"Our results showed that electrical brain activity acquired from the scalp surface carries enough information to reconstruct continuous, unconstrained hand movements," Contreras-Vidal said.

The researchers found that one sensor in particular (of the 34 used) provided the most accurate information. The sensor was located over a part of the brain called the primary sensorimotor cortex, a region associated with voluntary movement. Useful signals were also recorded from another region called the inferior parietal lobule, which is known to help guide limb movement. The authors used these findings to confirm the validity of their methods.

This study has implications for future brain-computer interface technologies and for those already in existence. "It may eventually be possible for people with severe neuromuscular disorders, such as amyotrophic lateral sclerosis (ALS), stroke, or spinal cord injury, to regain control of complex tasks without needing to have electrodes implanted in their brains," said Jonathan Wolpaw, MD, of the New York State Department of Health's Wadsworth Center in Albany, who was unaffiliated with the study. "The paper enhances the potential value of EEG for laboratory studies and clinical monitoring of brain function."

The findings could also help improve existing EEG-based systems designed to allow movement-impaired people to control a computer cursor with just their thoughts. These systems now require that users undergo extensive training sessions. Contreras-Vidal said the length of this training could be reduced and more effortless control achieved using the methods in this study.

The research was supported by the Paris-based La Fondation Motrice.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of more than 40,000 basic scientists and clinicians who study the brain and nervous system. Contreras-Vidal can be reached at pepeum@umd.edu

Related Publications

Page Information, Citing and Disclaimer

Disabled World is a comprehensive online resource that provides information and news related to disabilities, assistive technologies, and accessibility issues. Founded in 2004 our website covers a wide range of topics, including disability rights, healthcare, education, employment, and independent living, with the goal of supporting the disability community and their families.

Cite This Page (APA): Society for Neuroscience. (2010, March 3). Hand Movement Using Brain Signals for Movement Impaired. Disabled World. Retrieved September 17, 2024 from www.disabled-world.com/assistivedevices/prostheses/brain-signals.php

Permalink: <a href="https://www.disabled-world.com/assistivedevices/prostheses/brain-signals.php">Hand Movement Using Brain Signals for Movement Impaired</a>: System could potentially operate a robotic arm or motorized wheelchair for people with disabilities or paralysis.

Disabled World provides general information only. Materials presented are never meant to substitute for qualified medical care. Any 3rd party offering or advertising does not constitute an endorsement.