Skip to main content
Accessibility|Contact|Privacy|Terms of Service

Amniotic Fluid May Provide Stem Cells for Future Therapies

  • Published: 2009-03-31 : Author: American Society of Hematology
  • Synopsis: Amniotic fluid surrounding an embryo may be a potential new source of stem cells for therapeutic applications.

Main Document

For the first time, scientists have shown that amniotic fluid (the protective liquid surrounding an embryo) may be a potential new source of stem cells for therapeutic applications.

For the first time, scientists have shown that amniotic fluid (the protective liquid surrounding an embryo) may be a potential new source of stem cells for therapeutic applications. The study was pre-published online on February 12, 2009, in Blood, the official journal of the American Society of Hematology.

"Building on observations made by other scientists, our research team wondered whether stem cells could be detected in amniotic fluid. We looked at the capacity of these cells to form new blood cells both inside and outside the body, and also compared their characteristics to other well-known sources of stem cells," said senior study author Marina Cavazzana-Calvo, MD, PhD, of INSERM, the national French institute for health and biomedical research. Isabelle Andre-Schmutz, PhD, of INSERM, also a senior author of the study, added, "The answer was a resounding 'yes' - the cells we isolated from the amniotic fluid are a new source of stem cells that may potentially be used to treat a variety of human diseases."

To conduct the study, amniotic fluid was collected from pregnant mice between 9.5 and 19.5 days post-coitus. Human amniotic fluid was collected during routine diagnostic procedures (amniocentesis) from volunteer donors between seven and 35 weeks of pregnancy.

Amniotic fluid (AF) cells that had markers similar to bone marrow stem cells (termed AFKL cells) were then isolated for use in experiments, as these cell markers were indicative of progenitor cells (cells that have the capacity to differentiate into other types of cells).

In vitro, AFKL cells from both mice and humans were able to generate all blood cell lineages, including red (erythroid) blood cells and white (myeloid and lymphoid) blood cells in experiments performed outside the animals. But the scientists also wanted to explore the AFKL cells' hematopoietic (blood-forming) potential in vivo. Therefore, adult mice were irradiated to destroy their capacity to produce blood cells and injected with either AFKL cells or fetal liver cells. Fetal liver was used for comparison as it is the primary source for hematopoietic cells in developing embryos.

The peripheral blood of the transplanted mice was examined every four weeks, and after 16-18 weeks the blood-forming organs (bone marrow, spleen, thymus, and lymph nodes) of the mice were dissected. Transplants using mouse AFKL cells were found to be successful; newly formed white blood cells of all lineages derived from AFKL cells appeared in most of the irradiated mice four weeks after the procedure. As expected, all of these blood cell types were detected in all of the control group mice who received fetal liver cell transplants. Scientists continued to find AFKL-derived cells in the irradiated mice four months later, demonstrating the long-term ability of the transplanted cells to produce new blood cells.

Bone marrow samples from the transplanted mice were also taken and injected in a second set of mice and the peripheral blood of this new group of irradiated mice was analyzed and their hematopoietic organs examined after 10-13 weeks. The secondary transplants with mouse AFKL cells were partially successful with some of the mice en-grafting the donor cells. This finding shows that AFKL cells have the ability to self-renew, a key characteristic of stem cells.

Though the human AFKL cells failed to reconstitute the hematopoietic system in irradiated, immunodeficient mice, experiments are currently underway to overcome obstacles that may have led to this failure, such as using a low number of cells for the injection and conducting the transplant in adult mice (en-graftment is easier to obtain in newborn mice).

As additional confirmation of the probability that AFKL cells are indeed stem cells, the researchers examined them for the expression of specific genes known to be involved in hematopoietic development. The overall gene expression profile of the AFKL cells was found to resemble blood cell progenitors from known hematopoiesis sites such as the aorta-gonadmesonephros region, placenta, and the umbilical/vitelline arteries.

Reference: The American Society of Hematology (www.hematology.org) is the world's largest professional society concerned with the causes and treatment of blood disorders. Its mission is to further the understanding, diagnosis, treatment, and prevention of disorders affecting blood, bone marrow, and the immunologic, hemostatic, and vascular systems, by promoting research, clinical care, education, training, and advocacy in hematology. In September 2008, ASH launched Blood: The Vital Connection (www.bloodthevitalconnection.org), a credible online resource addressing bleeding and clotting disorders, anemia, and cancer. It provides hematologist-approved information about these common blood conditions including risk factors, preventive measures, and treatment options.

Similar Topics

1 : Smart Cells Releases 1st Sample to Treat Autism : Smart Cells.
2 : Discovery May Result in Medication to Build Stronger Muscles Even in Old Age : Karolinska Institutet.
3 : Sensory Interneurons from Stem Cells Enable the Sense of Touch : University of California - Los Angeles Health Sciences.
4 : COPD Patients See Improvement from Stem Cell Therapy : Lung Institute.
5 : Stem Cell Therapy to Relieve Joint Pain : Dr. Mark Wagner.
From our Regenerative Medicine section - Full List (94 Items)


Submit disability news, coming events, as well as assistive technology product news and reviews.


Loan Information for low income singles, families, seniors and disabled. Includes home, vehicle and personal loans.


Famous People with Disabilities - Well known people with disabilities and conditions who contributed to society.


List of awareness ribbon colors and their meaning. Also see our calendar of awareness dates.


Blood Pressure Chart - What should your blood pressure be, and information on blood group types/compatibility.





1 : Telemedicine Helps Overcome Healthcare Gender Based Barriers
2 : Screen Reader Plus Keyboard Helps Blind, Low-Vision Users Browse Modern Webpages
3 : Our Digital Remains Should be Treated with Same Care and Respect as Physical Remains
4 : Tungsten: Concern Over Possible Health Risk by Human Exposure to Tungsten
5 : Student Loan Discharge Process for Disabled Veterans Made Easier
6 : Growing Bone and Cartilage Tissues for Humans from Flaxseed Like Particles
7 : Throat Reflexes Differ in People with Tetraplegia and Sleep Apnea
8 : UTA Grant to Help Minority Students Link Assistive Technology with Disability Studies
9 : Body Probe as Thin as a Hair Has Imaging Function and Temperature Sensor
10 : Dripping Candle Wax Bone Disease (Melorheostosis) Cause Solved


Disclaimer: This site does not employ and is not overseen by medical professionals. Content on Disabled World is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of a physician or other qualified health provider with any questions you may have regarding a medical condition. See our Terms of Service for more information.

Reporting Errors: Disabled World is an independent website, your assistance in reporting outdated or inaccurate information is appreciated. If you find an error please let us know.

© 2004 - 2018 Disabled World™