Screen Readers Skip to Content

Stem Cells Repair Damaged Spinal Cord Tissue

Published: 2010-10-08
Author: Karolinska Institutet
Peer-Reviewed Publication: N/A
Jump to: Main Digest | Publications

Synopsis: How stem cells together with other cells repair damaged tissue in the spinal cord results of potential significance to development of therapies for spinal cord injury. Researchers at Karolinska Institutet have shown how stem cells, together with other cells, repair damaged tissue in the mouse spinal cord. The results are of potential significance to the development of therapies for spinal cord injury.

advertisements

Main Digest

Researchers at Karolinska Institutet have shown how stem cells, together with other cells, repair damaged tissue in the mouse spinal cord. The results are of potential significance to the development of therapies for spinal cord injury.

This article is from our digest of publications relating to Regenerative Medicine News that also includes:

There is hope that damage to the spinal cord and brain will one day be treatable using stem cells (i.e. immature cells that can develop into different cell types). Stem cell-like cells have been found in most parts of the adult human nervous system, although it is still unclear how much they contribute to the formation of new, functioning cells in adult individuals.

A joint study by Professor Jonas Frisen's research group at Karolinska Institutet and their colleagues from France and Japan, and published in Cell Stem Cell, shows how stem cells and several other cell types contribute to the formation of new spinal cord cells in mice and how this changes dramatically after trauma.

The research group has identified a type of stem cell, called an ependymal cell, in the spinal cord. They show that these cells are inactive in the healthy spinal cord, and that the cell formation that takes place does so mainly through the division of more mature cells. When the spinal cord is injured, however, these stem cells are activated to become the dominant source of new cells.

The stem cells then give rise to cells that form scar tissue and to a type of support cell that is an important component of spinal cord functionality. The scientists also show that a certain family of mature cells known as astrocytes produce large numbers of scar-forming cells after injury.

"The stem cells have a certain positive effect following injury, but not enough for spinal cord functionality to be restored," says Jonas Frisen. "One interesting question now is whether pharmaceutical compounds can be identified to stimulate the cells to form more support cells in order to improve functional recovery after a spinal trauma." Publication:

Fanie Barnabe-Heider, Christian Garitz, Hanna Sabelstram, Hirohide Takebayashi, Frank W. Pfrieger, Konstantinos Meletis & Jonas Frisen Origin of new glial cells in the intact and injured adult spinal cord

Cell Stem Cell, 2010 Oct 8;7(4):470-82

Post to Twitter Add to Facebook

Disabled World is an independent disability community established in 2004 to provide disability news and information to people with disabilities, seniors, their family and/or carers. See our homepage for informative news, reviews, sports, stories and how-tos. You can also connect with us on Twitter and Facebook or learn more about Disabled World on our about us page.

advertisements

Disabled World provides general information only. The materials presented are never meant to substitute for professional medical care by a qualified practitioner, nor should they be construed as such. Financial support is derived from advertisements or referral programs, where indicated. Any 3rd party offering or advertising does not constitute an endorsement.


Cite This Page (APA): Karolinska Institutet. (2010, October 8). Stem Cells Repair Damaged Spinal Cord Tissue. Disabled World. Retrieved October 2, 2022 from www.disabled-world.com/news/research/stemcells/stemcells-spinal-cord.php

Permalink: <a href="https://www.disabled-world.com/news/research/stemcells/stemcells-spinal-cord.php">Stem Cells Repair Damaged Spinal Cord Tissue</a>